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Layout Decomposition Design for Manufacturability

Abstract

Lithography has been and will continue to be the backbone of the semicon-
ductor industry to design reliable, smaller, and faster integrated circuit chips.
In recent years, the continuous shrinkage of the transistor feature size and the
rapid increase of integration density have imposed severe challenges on design
and manufacturing closures. At the 16nm technology node, the mainstream
193nm ArF immersion lithography has reached its limit of manufacturing capa-
bility. Thus, in order to bridge the gap between the manufacturing capability of
lithography and expected chip performance, a variety of emerging technologies
have been proposed to enable the industry to keep the pace of Moore’s law. In
this thesis, we will focus on multiple patterning lithography, e-beam lithography
and block copolymer directed self-assembly lithography, which are among the

most promising technologies.

As all these emerging lithography technologies are facing different chal-
lenges, more effort in research is required. In this thesis, various problems
faced by these technologies are investigated and corresponding solutions with
computer-aided design (CAD) algorithm are presented. The content of this

thesis is organized as follows.

In Chapter 1, several promising manufacture technologies and the key chal-

lenges, and the corresponding challenges are introduced.

In Chapter 2, we consider the triple patterning lithography layout decom-
position problem in IC manufacturing design. Triple patterning lithography is
currently the most widely used technology, and in which layout decomposition
is the most crucial challenge. Previous work proved that the triple patterning
lithography layout decomposition is a strong NP complete problem, which is

extremely challenging for the very large scale case. Most of the existing studies
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use heuristic or semi-definite programming relaxation methods, these approaches
are either low quality or time-consuming. To obtain better layout decomposition
results in desirable runtime, we design a discrete relaxation theory and frame-
work for triple patterning lithography layout decomposition. First, we propose a
surface projection method for identifying native conflicts, and then construct a
conflict graph. Guided by the theory, the conflict graph is reduced to small size
subgraphs by several graph reductions, which is a discrete relaxation. Further-
more, by ignoring stitch insertions and assigning weights to features, the layout
decomposition problem on the subgraphs is further relaxed to a integer program-
ming, which is solved by the Branch-and-Bound method. To obtain a feasible
solution of the original problem, legalization methods are introduced to legalize
a relaxation solution. At the legalization stage, we prior utilize one-stitch in-
sertion to eliminate conflicts, and use a backtrack coloring algorithm to obtain
a better solution. We test our decomposition approach on the ISCAS-85 & 89
benchmarks. Experimental comparisons show that our approach achieves better
results than those by the state-of-the-art decomposers. Especially, according to
our discrete relaxation theory, some optimal decompositions are obtained. It
must be noted that the discrete relaxation framework proposed in this thesis

can be used to address many other NP-hard discrete problems.

Hybrid e-beam lithography (EBL) and triple patterning lithography (TPL)
is an advanced technology for manufacture of integrated circuit. This technology
combines the advantages of EBL and TPL, which is more promising for further
pattern product industry. Yield and resolution aware layout decomposition is
the most crucial step in this technology. For the general layout, existing research
first splits each feature into several sub-features, and then uses a local research
algorithm to achieve heuristic results. Apparently, the solution space in existing
work is very large, and the quality of the results by local search algorithm is
quite dependent on the runtime. In Chapter 3, first, we prove that the yield

and resolution aware layout decomposition problem is NP-hard. And then,
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we propose a two stage decomposition flow for the hybrid e-beam and triple
patterning lithography of general layout decomposition (HETLD) problem. At
the first stage, we formulate two optimization problems: the e-beam and stitch
aware TPL mask assignment (ESTMA) problem and the extended minimum
weight dominating set for R, mask assignment (MDSR;MA) problem. Binary
linear program formulations of the two problems are formulated and solved by
the cutting plane approach. At the second stage, solutions of the first stage
problems are legalized to feasible solutions of the HETLD problem by stitch
insertion and e-beam shot. This two stage operation can greatly reduce the
runtime. And to further speed up decomposition, we reduce the problem size
by removing some vertices and some minor conflict edges before decomposition.
Experimental results show the effectiveness of our decomposition methods based

on ESTMA and MDSRsMA.

Block copolymer directed self-assembly (DSA) is a simple and promising
candidate next-generation chip manufacturing technology. AS a complement
technology of multi-patterning, DSA is low-cost and suitable for patterning con-
tact layer. In Chapter 4, we consider the contact layer mask and template as-
signment problem of DSA with triple patterning lithography. A desirable mask
and template assignment is significant for the high yield of DSA with multi-
patterning technology. Existing algorithm is based on look-up-table (LUT). For
large scale cases, since LUT can not list all the possible mask and template as-
signments, the quality of obtained results is quite limited. To address this issue,
we design a discrete relaxation method for this mask and template assignment
problem. First, we construct a weighted conflict grouping graph, in which edges
with negative weights are introduced, then a discrete relaxation based mask as-
signment problem is proposed. The integer linear program formulation of the
discrete relaxation problem is solved by Branch-and-Bound method for obtain-
ing a lower bound on the optimal value of this problem. In order to improve the

lower bound, some valid inequalities are introduced to prune some poor relax-
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ation solutions. At last, the obtained discrete relaxation solution is transformed
to a legal solution of the original problem by solving a template assignment
problem on the layout graph, which provides an upper bound on the optimal
value of the original problem. Experimental results and comparisons show the
effectiveness and efficiency of our method. In addition, under the discrete re-
laxation theory, the quality of our experimental results can be evaluated by the
obtained upper and lower bounds. Specifically, the gap between the obtained
upper and lower bounds is 0 for most of the sparse benchmarks, and the average

gap is 0.4% for dense benchmarks.

To improve via yield in circuit designs, inserting a redundant via for every
via is necessary. Block copolymer directed self-assembly (DSA) is an emerging
and promising lithography technology for manufacture of vias and redundant
vias, in which guiding templates are used to enhance the resolution. Consider-
ing manufacturability of via layer, multiple patterning lithography is also needed
in advanced designs. In Chapter 5, we study the redundant via insertion and
guiding template assignment for DSA with multiple patterning problem at the
post-routing stage. Due to the complexity of the problem, the current stud-
ies focus on formulating the problem as integer linear programming (ILP) with
many variables and constraints. Obviously, for large scale instances, it is not
practical to obtain a result by solving ILP. In order to fast achieve a high qual-
ity result, we propose a graph methodology based solution framework: Firstly,
a conflict graph on the grid model is constructed. Secondly, the problem with
single patterning is formulated as a constrained maximum weight independent
set problem, for which a fast algorithm is introduced to obtain a local optimal
solution. To further improve the performance, a greedy method is proposed to
search for a good initial solution. Our framework is general and can be further
extended to solve the problem with double patterning or triple patterning in a
two stage manner. Experimental results validate the efficiency and the effective-

ness of our method. Specifically, our method is 2.38x, 5.79x and 27.82x faster
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than state-of-the-art for the problem with single, double and triple patterning,

respectively.

For better reliability and manufacturability, in Chapter 6, we consider the
redundant via insertion and DSA guiding template assignment with dummy via
insertion at the post-routing stage. Firstly, by analyzing the structure proper-
ty of guiding templates, we propose a dictionary-based solution expression to
discard redundant solutions. Then, honoring the compact solution expression,
we construct a conflict graph with dummy via insertion, and then formulate the
problem as a constrained maximum weight independent set problem (CMWIS).
Furthermore, the CMWIS problem is reformulated as an integer linear program-
ming (ILP). To make a good tradeoff between solution quality and runtime, we
relax the ILP to an unconstrained nonlinear programming (UNP) by a three
dimensional tensor. Finally, a line search optimization algorithm is proposed
to solve the UNP. Experimental results verify the efficiency and effectiveness
of our proposed algorithm. Specifically, our algorithm achieves experimental

results comparable with a state-of-the-art work, and saves 90% runtime.

Modern circuit designs often contain standard cells of different row heights
to meet various design requirements such as low power and high performance.
Due to the higher interference among heterogenous cell structures, the legaliza-
tion problem for mixed-cell-height standard cells becomes more challenging. In
addition, to meet the needs of design and manufacturibility, an ideal legalization
tool should concern total cell movement, maximum cell movement, VDD /VSS
alignment, edge spacing, pin access/short, etc. The existing mixed-cell-height
standard cell legalization algorithms ignore the maximum cell movement. In
addition, the existing studies eliminate cell overlap in the horizontal direction,
which lacks a global view. In Chapter 7, we present an analytical legalization
algorithm for mixed-cell-height standard cells to simultaneously minimize the
average and the maximum cell movements. By analyzing and remodeling the

legalization problem, we first formulate it as a mixed integer quadratic pro-
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gramming problem (MIQP), which allows cell spreading concurrently in both
the horizontal and vertical directions. By relaxing its discrete constraints to
linear ones, we convert the MIQP into a quadratic programming problem (QP).
To solve the QP efficiently, we further reformulate it as a linear complemen-
tary problem (LCP), and solve the LCP by a modulus-based matrix splitting
iteration method (MMSIM). To guarantee the convergence of the MMSIM, we
use a series of operations to ensure that its induced objective matrix is sym-
metric positive definite and its constraint matrix is of full row rank. Finally, a
linear programming based method and the Kuhn-Munkres algorithm are used
to legalize cells with least movements. Experimental results demonstrate the
effectiveness of our algorithm in reducing both the average and the maximum

cell movements for mixed-cell-height legalization.

Keywords: VLSI design automation, emerging manufacture technol-
ogy, layout decomposition, computer-aided design, optimization algo-

rithm.
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Chapter 1 Introduction

In semiconductor industry, as technology nodes continue to scale down, min-
imum feature size of the manufacturing process has been shrinking well beyond
the resolution limits of the state-of-the-art lithography tool, i.e., 193nm ArF
immersion lithography. To keep the high growth of very large scale integrated
(VLSI) circuit, a variety of emerging technologies have been designed to enable
the manufacture of VLSI circuit. Computer-aided design (CAD) optimization
is a crucial step for driving these emerging technologies to fit the manufac-
ture of advanced VLSI circuit. The most existing problems in VLSI design for
manufacturibility are large-scale and NP-hard complexity. More optimization
theories and effective algorithms are required to achieve desirable performance

and throughput of chips.

1.1 Introduction to Lithography Technology

The fabrication of ICs involves a series of physical and chemical processes,
among which lithography is one of the most important step. Servers, computers,
mobile phones, and other digital appliances, which are now indispensable parts
of modern societies, are all impossible without the continuous advancement of

the lithography technologies.

Conventional lithography relies on light for manufacturing, thus it is called
photolithography or optical lithography. It is similar to photographic print-
ing. A conventional optical lithography system is sketchily shown in Figure
1.1. There are four major components: light source, mask, projection lens and
photoresist-coated wafer consisting of a number of dies. Through the mask and

the projection lens, light images of extremely small features (down to several

1



TN e VATS'S

N A

r 5o Light source

lllumination- Lens

Projection

Lens
Immersion

Wafer

Figure 1.1: Conventional optical lithography system.
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Figure 1.2: Lithography wavelength.

nanometers in size) will be created on the photoresist on the wafer surface. The
step after lithography is etching, which is to use chemicals to create features on
the wafer based on the light images on the photoresist. The lithography process
and the etching process, denoted as litho-etch process, are the key steps for 1C

manufacturing.

In the current mainstream optical lithography technology, the light source
is ArF deep ultraviolet with a wavelength of 193nm. The minimum resolution

achievable with optical lithography is linear to the light wavelength. According

2
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to [65], the critical dimension (the minimum feature size) C'D equals to

CD = %, (1.1)
where ky is the process factor, A is the wavelength of used light, and N A is the
numerical aperture of lens. As illustrated in Figure 1.2, as the light wavelength
remains the same (193nm) but the transistor feature size keeps shrinking fol-

lowing Moore” s law, the gap between the desired resolution (CD) and the light

wavelength becomes increasingly large [100].

The continuous shrinkage of the transistor feature size and the rapid in-
creasing of integration density have imposed severe challenges on design and
manufacturing closures. The widening gap between limited manufacturing ca-
pability with sub-wavelength lithography technology and the high expected de-
sign performance has pushed the 193nm ArF lithography technology to its lim-
it [73,83,102]. As shown in Figure 1.3, given an optical lithography system
with C'D = 36nm, if the required C'D of advanced technology node designs are
40nm, 32nm, 22nm, 14nm and 7nm, respectively, then the patterned features
are simulated. From the simulated results, it can be seen that the smaller size

of features suffer from the more severe feature overlap.

To keep the pace of Moore’s law, a variety of emerging technologies have

been proposed to enable the manufacture of IC in semiconductor industry. A-

3
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Figure 1.4: Roadmap for transistor, interconnect and patterning.

mong them, the most promising ones are multiple patterning lithography (MPL),
e-beam lithography (EBL), block copolymer directed self-assembly (DSA) and
extreme ultraviolet (EUV). Figure 1.4 shows the roadmap of lithography tech-
nologies. In the near term, MPL has become the most viable lithography tech-
nique. In the longer term, next-generation emerging lithography technologies,

including EUV, EBL and DSA, are under intensive research and development.

Multiple patterning lithography (MPL) technology is an extension of the
conventional optical lithography. It divides a layout into multiple masks and
repeats the litho-etch process. As illustrated in Figure 1.5(a), MPL splits target
features into several masks such that the coarser pitches on each mask can be sin-
gle patterned using the 193nm wavelength lithography. Then features on differ-
ent masks are combined to obtain finer pitches. According to different processes,
MPL can be classified into LELE-type MPL and spacer-type MPL. LELE-type
MPL includes double patterning lithography (DPL), triple patterning lithog-
raphy (TPL) and quadruple patterning lithography (QPL), while spacer-type
MPL includes self-aligned double patterning (SADP) and self-aligned quadruple

4
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Figure 1.5: Triple patterning lithography process.

patterning (SAQP) [102]. As shown in Figure 1.4. DPL has been widely used in
industry for years to produce sub-22nm devices. However, DPL gets to its limit
for 14nm technology nodes and beyond. TPL, as a natural extension of DPL,
is considered as a substitute of DPL for the 14nm, 10nm or even Tnm technol-
ogy nodes. Figure 1.5 shows the layout decomposition process of TPL. Given a
layout as the left figure, it is decomposed into three sparser parts corresponding

to three masks.

EBL has been successfully deployed in many applications, especially for
critical layers printing, photomask manufacturing, and prototyping. Besides, in
the longer future, e.g., for the 7nm and 5nm technology nodes, it is a promising
manufacturing solution for mass productions [72,74]. EBL is a maskless lithog-
raphy technology that shoots a beam of electrons onto a wafer to directly create
features of desired shapes, as shown in Figure 1.6. Benefiting from this, EBL can
achieve quite high resolution due to avoiding the light diffraction from the mask.
Conventional EBL uses variable shaped beam (VSB), by which every shot can
only create one rectangle, hence the total number of shots will be unacceptable

for high-volume manufacturing [76].

As MPL is an extension of optical lithography, its throughput is high, but
the resolution is still limited comparing with EBL. Besides, the mask cost will

increase rapidly with the increasing number of masks and the design rules will

5
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become even more complicated with more constraints. The resolution of EBL is
excellent, but after decades of development, it still suffers from the bottleneck of
low throughput. Therefore, a novel concept of hybrid lithography was recently
proposed, which is to use multiple types of lithography technologies together to
fabricate a layout [14]. For example, by combining MPL with high throughput
and EBL with high resolution, more powerful manufacturing capability can be

achieved and the manufacturing cost, including the mask cost, can be reduced.

In the DSA process, when the proportion between two block copolymers is
appropriate, the block copolymers would form many desirable cylinders. And
by removing these cylinders, the remaining material can be used to fabricate
vias/contacts. To generate irregularly distributed vias using DSA technology,
several neighbouring vias should be surrounded by guiding templates [34, 55].
As illustrated in Figure 1.7(a), two block copolymers and a guiding template
produce a material with many cylinders. The guiding templates are first print-
ed using the 193nm wavelength lithography, and then they are filled with special
chemical material such as block copolymer. After the annealing process, cylin-

ders will be formed and transferred to substrate patterns with sub-lithographic

6
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Figure 1.7: Directed self-assembly process and guiding template.

pitches. DSA is particularly suitable for contact/via layer manufacturing [88]
because of its capability of printing dense features with uniform dimensions. As
shown in Figure 1.7(b), patterns of guide templates are first generated using
optical lithography with masks, which will be used to guide the self-assembly of
block copolymers. After that, contact holes will be formed by etching. When
the contacts/vias are very dense, we can use MPL (i.e., multiple masks) to print
the guide templates. In this thesis, we will present algorithms to incorporate

DSA with MPL to fabricate contact/via layers in a more cost-effective way.

EUV has very short wavelength (13.5nm) to provide finer printing resolu-
tion compared to the 193nm wavelength lithography as shown in Figure 1.8.
However, tremendous challenges, such as power sources, resists and defect-free
masks, have notably delayed the adoption of EUV lithography for volume pro-
duction. With the wavelength of only 13.5nm, EUV lithography greatly im-
proves the problem of feature distortions caused by light diffraction. However,
the light is absorbed by most materials, and thus only reflective optics (mirrors)
and masks can be used; further, the scanning processing must be performed in
a vacuum environment. For the process using clear-field masks, layout features
on the masks are made by light absorbers, forming the dark regions on a wafer.
In contrast, regions not covered by features are bright. As a result, the flare

effect due to the surface roughness of the reflective optical components could

7
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Figure 1.8: Extreme ultraviolet lithography system.

reduce the contrast between bright regions and dark ones. In particular, flare
is inversely proportional to squared wavelength; the employed small wavelength
makes EUV lithography suffer from high flare level. In addition, the thickness
of absorbers and the incident angle of light cause the shadowing effect. Both
process effects could result in significant critical dimension distortions or shape

variations.

1.2 Challenges for Emerging Lithography Technology

As mentioned above, with the shrinking feature size, various of lithogra-
phy technologies were proposed. However, each of these technologies suffers
from many challenges. In this thesis, we consider some of crucial issues about

computer-aided design algorithm as in Figure 1.9.
1.2.1 Challenge for Multiple Patterning Lithography

The key challenge of MPL is the new design problem, called layout decom-
position, where input layout is divided into several masks (colors). When the
distance between two input features is less than the minimum coloring distance,
they need to be assigned to different masks to avoid a coloring conflict. Some-
times coloring conflict can be also resolved by inserting stitch to split a pattern

into two touching parts. However, these introduced stitches lead to yield loss

8
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Figure 1.9: Design flow and challenges.

because of overlay error. Therefore, two of the main objectives in layout de-
composition are conflict minimization and stitch minimization. An example of
triple patterning layout decomposition is shown in Figure 1.5, where all features
in input layout are divided into three masks, in which one of the features is split

into two parts, and they are assigned to two masks.

1.2.2 Challenge for E-beam Lithography

The conventional type of EBL system is variable shaped beam (VSB). As
illustrated in Figure 1.6(b), in VSB mode the layout is decomposed into a set
of rectangles, and each rectangle would be shot into resist by dose of electron
sequentially. The whole processing time of EBL system increases with numbers
of beam shots. Even with decades of development, the key limitation of the
EBL system has been and still is the low throughput [76]. Nowadays, EBL is
more likely used as a complementary technology of MPL in manufacture process.
Since the low throughput, we should assign as less as possible features to EBL
process. Yield and resolution aware layout decomposition problem is the most

crucial challenge.
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1.2.3 Challenge for Block Copolymer Directed Self-Assembly

To pattern via/contact holes by DSA, guiding templates are usually used to
form contacts [44]. For sparse structure, a number of single-hole templates are
used to form contacts. For dense structure, too close templates would generate
conflicts. To reduce the conflicts, some of the contacts within a short distance
would be grouped together in a multi-hole template. However, grouping more
than one contacts in a multi-hole template may introduce overlays. For differ-
ent guiding templates with different shapes or sizes, the overlays are different.
Specifically, complex (irregular shape) guiding templates may introduce large
overlays and the contained contacts may not be patterned correctly [93]. Hence,

during template assignment, the cost of a guiding template should be considered.

Furthermore, for a very dense contact layer layout, the contact layer fabri-
cated by single patterning is unqualified due to a number of conflict errors. Hence
the DSA with multiple patterning (DSA-MP) technology is a solid choice, and

a crucial problem in DSA-MP is the mask and template assignment.

1.2.4 Challenge for Redundant Via Insertion by DSA with Multiple

Patterning

In an IC layout, a via provides the connection between two net segments
from adjacent metal layers. A single via may fail partially or completely because
of various reasons, such as random defects, cut misalignment and electro migra-
tion or thermal stress [110]. A partial via failure may induce timing problems
due to the increase of contact resistance and parasitic capacitance, while a com-
plete via failure will produce a broken net in a circuit [85]. These failures may
heavily hinder the functionality and yield of a circuit. Therefore, reducing yield
loss due to via failure is one of the most important problems in the IC design
flow. A promising method for improving via yield and reliability is adding a

redundant via adjacent to every via [110], enabling via failure to be tolerated.

10
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Conventionally, the redundant via insertion problem and the guiding tem-
plate assignment for DSA-MP problem are considered at two separate stages.
After obtaining a redundant via insertion, the guiding template assignment is
considered. There exists an apparent issue for this separate manner. That is,
if the via distribution is locally very dense, assigning vias to regular shaped
DSA guiding templates is very difficult without violating design rules. Hence,
consideration of the two stages simultaneously is necessary. In this chapter, we
focus on redundant via insertion and guiding template assignment for DSA-MP
problem, considering three scenarios: single patterning (SP), double patterning

(DP), and triple patterning (TP).

1.2.5 Challenge for Multi-Deck Standard Cell Legalization

Modern circuit designs often contain (tens of) millions of standard cells
located at placement sites on rows. To meet various design requirements such
as low power and high performance, multi-deck standard cells occupying multi-
rows (e.g., flip-flops) are often used in advanced technologies [8,32]. Such multi-
row height standard cells bring up challenging issues for placement, especially
the mixed-cell-height legalization, due to the heterogenous cell structures and

additional power-rail constraints, as pointed out in [26,89].

In traditional single-row height standard-cell legalization, cell overlapping
is independent among rows. In contrast, with multi-row height cells, shifting a
cell in one row may cause cell overlaps in another row. The heterogenous cell
structures could incur substantial global cell interferences among all cells in a
circuit. Due to the global cell interference, existing single-row height standard-
cell legalizers [16, 25,28, 30, 50] cannot directly be extended to handle mixed-
cell-height standard cells effectively. As a result, a mixed-cell-height legalization
method needs to consider the heterogenous cell structures, with more global

cell interferences and larger solution spaces. Moreover, the alignment of power

11
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(VDD) or ground (VSS) lines must be considered in mixed-cell-height standard-
cell legalization. In addition, to preserve the quality of a given global placement,
an ideal legalization method should minimize not only the average cell movement

but also the maximum one [29].

1.3 Contribution of This Thesis

In this thesis, firstly, some promising emerging lithography technologies for
VLSI circuit manufacture are investigated. We propose theoretical framework-
s and corresponding algorithms for challenges listed in the above subsections.
Numerous experiments verify the efficiency and effectiveness of all proposed al-

gorithms.

In Chapter 2, by considering the advantage of the relaxation method, we
propose in this chapter a discrete relaxation theory and the theory based lay-
out decomposition framework for triple patterning lithography (TPL). In the
framework, conflicts and stitch insertions are considered separately. Our de-
composition framework obtains a decomposition solution in two steps. The first
step focuses on finding a discrete relaxation solution. Due to our relaxation by
graph reduction tricks and stitch insertions not considered at this step, the solu-
tion space is dramatically reduced, and we can quickly find an optimal solution
of the relaxation problem. At the second step, the relaxation solution is legalized
to a feasible solution of the TPL layout decomposition problem. Experimental
results and comparisons indicate that our discrete relaxation based method is
fast and effective. Specifically, for some test benchmarks, optimal solutions are

obtained according to our discrete relaxation theory.

In Chapter 3, we consider the hybrid e-beam and TPL of general layout
decomposition problem. We propose a two-stage decomposition flow for the

problem. At the first stage, we consider an e-beam and stitch aware TPL mask

12
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assignment (ESTMA) problem, and then the problem is formulated as a binary
linear program and solved by the cutting plane approach. At the second stage,
the solution is legalized to a feasible solution of the HETLD problem by stitch
insertion and e-beam shot. In addition, some graph reduction techniques pro-
posed by previous TPL layout decomposers [36,53,59,105] are used to reduce
the problem size. Moreover, a new graph reduction which deletes some minor
conflict edges is proposed to further speed up the decomposition flow. Further-
more, in order to obtain a better solution with less VSB number, we propose an
extended minimum weight dominating set for R4 mask assignment (MDSR;MA)
problem, which is also formulated as an ILP. In the first stage, if we solve the
MDSR;MA problem instead of the ESTMA problem, then more patterns can
be assigned to TPL masks by inserting stitches. Experimental results show the
effectiveness of the ESTMA and the MDSR;MA based decomposition methods.
In addition, it must be noted that the two issues in [96] are avoided in this

chapter.

In Chapter 4, we focus on the mask and template assignment for DSA
with MP (MTADT) problem of general layout. We sum up general rules for
the costs of vertical or horizontal templates with different sizes, and construct
a weighted conflict grouping graph, in which the cost of used templates can
be calculated by the weights of conflict edges. Basing on the weighted conflict
grouping graph, we propose a novel integer linear program for the MTADT
problem, which is not equivalent to the MTADT problem but provides a lower
bound on the optimal value of the MTADT problem. Moreover, some valid
inequalities are introduced for cutting some no good solutions, and obtaining a
better lower bound. We propose a template assignment approach to transform a
relaxation solution to a feasible solution of the MTADT problem, which provides
an upper bound on the optimal value of the MTADT problem. According to

the obtained lower bound and upper bound, we can evaluate the quality of our
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experimental results. Specially, if the upper bound is equal to the lower bound,
then we obtain an optimal solution of the MTADT problem. Comparisons of
experimental results show that our decomposition method is effective. More
specifically, the gap between the obtained upper and lower bounds is 0.0% for
most of the sparse benchmarks, which shows the optimality of the obtained
results. And the average gap is 0.4% for the dense benchmarks, which shows

the goodness of the obtained results for dense layouts.

In Chapter 5, we focus on redundant via insertion and guiding template
assignment for DSA-MP problem, considering three scenarios: single pattern-
ing (SP), double patterning (DP), and triple patterning (TP). Previous work-
s [39,70] constructed ILP formulation basing on all the possible GTAs, which
needs a large number of variables and constraints. Unlike [39,70], we construct
ILP formulation by introducing multiplets, which can greatly reduce the num-
bers of variables and constraints. For single patterning, we construct a new
conflict graph basing on multiplets and formulate the problem as a constrained
maximum weight independent set (CMWIS) problem. Under the assumption
that a redundant via cannot be inserted if its related via is not manufacturable,
we prove that the CMWIS problem is equivalent to the initial problem. We
reduce the CMWIS problem to a maximum weight independent set problem
such that it can be tackled by a fast algorithm, which can obtain a local opti-
mal solution. For improving the solution quality, we propose a greedy method
to obtain an initial solution for the fast algorithm. For double/triple pattern-
ing, we propose a new solution flow, which is a two-stage method. At the first
stage, a contraction graph is constructed, and the contracted vertices are as-
signed to 2 or 3 masks. At the second stage, the solver for the single patterning
is called to achieve a desirable RVI and GTA for every mask. Experimental
results show that our algorithm for the problem with single patterning is faster

than the methods in [39,70], and our two-stage method for the problem with
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double/triple patterning is much faster than the method in [70]. Moreover, the

obtained results are better than those of the compared methods.

In Chapter 6, we investigate the redundant via insertion and DSA guiding
template assignment problem with dummy via insertion simultaneously. We
construct a new conflict graph for the redundant via insertion and DSA guiding
template assignment problem with dummy via insertion, and describe it as an
ILP formulation. We develop a novel fast algorithm to solve the ILP problem,
which can obtain a local optimal solution. Experimental results indicate efficien-
cy and effectiveness of our algorithm, and demonstrate that considering dummy

via insertion for the problem is better than without the help of dummy via.

In Chapter 7, we present an analytical mixed-cell-height standard-cell le-
galization algorithm to simultaneously minimize the average and the maximum
cell movements. By analyzing and remodeling the objective function and con-
straints, we formulate the mixed-cell-height standard-cell legalization problem
as a mixed integer quadratic program (MIQP), which considers not only the av-
erage cell movement, but also the maximum cell movement, the sub-maximum
movement, and the third maximum movement, etc. We convert the MIQP to
a quadratic programming problem (QP). Unlike the work in [21] which mini-
mizes only the average cell movement in the horizontal direction, we consider
cells spreading continuously in both the horizontal and vertical directions. The
QP is further reformulated as a linear complementarity problem (LCP), and
solved by a modulus-based matrix splitting iteration method (MMSIM). The
equivalence between the QP and the LCP is proved. We prove that the objec-
tive matrix is symmetric positive definite and the constraint matrix is of full
row rank, therefore, the convergence of MMSIM is guaranteed. We propose a
linear programming (LP) based method to further minimize the maximum cell
movement in the horizontal direction. Experimental results demonstrate that

our legalization model and method are effective for minimizing both the av-
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erage and the maximum cell movements. Compared with the state-of-the-art
work [21], for example, our algorithm reduces the average and maximum cell
movements by 16% and 64%, respectively. In particular, our legalization model
can be easily extended to consider the other complicated design rules (like fence

region, edge type spacing, and pin access/shorts issues [29,30], etc.).

1.4 Organization of This Thesis

In this thesis, we present our research results on design for manufactura-
bility. The goal of this thesis is to resolve five DFM challenges in advanced
lithography: layout decomposition, hybrid e-beam and MPL, optimization for
DSA-MP, redundant via insertion by DSA-MP, manufacturability aware multi-
deck cell legalization. The remaining chapters of this thesis are organized as

follows.

In Chapter 2, we propose a discrete relaxation framework for triple pattern-
ing lithography layout decomposition. In Section 2.1, we introduce the double
and triple patterning lithography layout decomposition, and corresponding pre-
vious methodologies. Problem formulation, the discrete relaxation theory, and
the overview of the TPL layout decomposition framework are stated in Section
2.2. Section 2.3 shows the surface projection technique for identifying conflic-
t features. Section 2.4 introduces the discrete relaxation method. Legalization
process is explained in Section 2.5. Section 2.6 details the graph reduction meth-
ods used in our decomposition framework. The graph reduction is also a kind
of discrete relaxation of the TPL layout decomposition problem. Experimental

results will be given in Section 2.7, and we conclude our work finally.

In Chapter 3, we resolve the layout decomposition for hybrid e-beam and
multiple patterning lithography by designing a two stage method. Section 3.1

describes the e-beam shot system and hybrid e-beam with MP layout decompo-
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sition. In Section 3.2, we state the problem, introduce the concepts of conflict
pattern and native conflict structure. In Section 3.3, we propose two problems:
e-beam and stitch aware TPL mask assignment problem and extended minimum
weight dominating set for R, mask assignment problem, and formulate them as
integer linear programming problems. In Section 3.4, we detail the stitch and
e-beam assignment for the patterns that are not resolved in the first decompo-
sition stage. Section 3.5 introduces some graph reduction techniques and shows
our hybrid decomposition flow. Experimental results are presented in Section

3.6, and summary is made in Section 3.7.

In Chapter 4, we focus on the mask and template assignment for DSA
with multiple patterning problem of general layout. The existing works rela-
tive to DSA are presented in Section 4.1. Section 4.2 shows the template types
and problem formulation. Section 4.3 introduces the discrete relaxation decom-
position method, and the feasible solution generation method is introduced in
Section 4.4. Experimental results are presented in Section 4.5, and summary of

our work is made in Section 4.6.

In Chapter 5, we insert redundant via for each via in contact layer, and
fabricate them by DSA-MP technology. The function and structure of redun-
dant via and the hybrid DSA with MP technology are shown in Secntion 5.1.
In Section 5.2, we describe the redundant via insertion and guiding template
assignment for DSA-MP problem, and present our solution flow. In Section 5.3,
we construct a conflict graph on the grid model. In Sections 5.4 and 5.5, we
detail our solution methods for the problem with single patterning and dou-
ble/triple patterning, respectively. In Section 5.6, we present the experimental

results, followed by the summary in Section 5.7.

In Chapter 6, we consider redundant via insertion by DSA-MP with dummy
via. Dummy via insertion is first introduced in Section 6.1. In Section 6.2, we

introduce the related concepts and the problem. In Section 6.3, we introduce
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the conflict graph construction. In Section 6.4, we detail our algorithms for the
problem. Experimental results are presented in Section 6.5, and summary is

drawn in Section 6.6.

In Chapter 7, manufacturability aware mixed-cell-height standard cell legal-
ization is handled. Previous single-row standard cell legalizers and total move-
ment aware mixed-cell-height standard cell legalizers are listed in Section 7.1.
Section 7.2 gives the problem statement. Section 7.3 shows our legalization mod-
el, which allows cell movements in both the horizontal and vertical directions
simultaneously. Section 7.4 details our legalization algorithms. Experimental

results are given in Section 7.5, and finally summary is made in Section 7.6.

Finally, in Chapter 8, conclusions of this thesis are made and several feasible

future works are listed.
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Chapter 2 Discrete Relaxation Method for
Triple Patterning Lithography Layout

Decomposition

2.1 Introduction

Relaxation is an important approach for NP-hard combinatorial optimiza-
tion problems. The minimum value of a relaxation problem provides a lower
bound on the minimum value of an NP-hard combinatorial optimization prob-
lem. Moreover, by legalizing a minimum solution of the relaxation problem to a
feasible one of the original problem, we can get a possibly least upper bound on
the minimum value of the original problem. There are two categories of relax-
ation methods, i.e., continuous relaxation and discrete relaxation. Continuous
relaxation includes convex relaxations [24], e.g., linear programming relaxation
and semidefinite programming relaxation. Discrete relaxation refers to some
discrete optimization problem based relaxation [12]. The discrete relaxation
problem should be much easier to solve. In this chapter, we propose a discrete
relaxation method for layout decomposition for triple patterning lithography,

which is a 0-1 program relaxation.

With the need of industry for more and more smaller cells, the current
193nm ArF lithography technology cannot meet the need of the IC industry.
Extreme Ultra-Violet (EUV) lithography is considered as a promising technolo-
gy for next-generation lithography. However, due to mask material, light source
and other device problems, EUV still cannot be put into IC manufacture. Con-
sequently, multiple patterning lithography (MPL) technology has become the
preferred, which decomposes an initial layout into multiple masks for use in
multiple exposure lithography. MPL is considered of great values in research

and industrial applications [4,13,51]. In MPL, layout decomposition is a key
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Figure 2.1: TPL layout decomposition. (a) An example of three masks assign-
ment. (b) An example of layout with a conflict. (¢) An example of layout with
inserting a stitch to eliminate conflict.

step. In this chapter, we focus on the layout decomposition for triple patterning
lithography.

Layout decomposition for triple patterning lithography (TPL) is that, an
initial layout is decomposed into three masks. Figure 2.1(a) shows an example
of decomposing a layout to three masks. For TPL, the rule of minimum coloring
spacing is that, if two features are within the minimum coloring spacing min,,
then they should be assigned to different masks; otherwise a conflict occurs
between the two features. As shown in Figure 1(b), according to the rule of
minimum coloring spacing, a conflict occurs between features a and d. Conflicts
can be eliminated by inserting stitches. That is, a feature may be split into
several touching sub-features by inserting stitches. As shown in Figure 2.1(c),
a stitch is inserted into feature d. Since both conflict and stitch will affect the
effect of lithography, especially the conflict, a crucial issue in TPL is to achieve

the minimum numbers of conflicts and stitches.

Before introducing previous works on TPL layout decomposition, it is nec-
essary to introduce some researches on double pattering lithography (DPL).
Generally, DPL layout decomposer converts the layout decomposition problem
to the 2-coloring problem. Kahng et al. [51] and Yuan et al. [107] constructed
integer linear programming (ILP) models, where the number of conflicts and
the number of stitches are minimized simultaneously. Xu et al. [95] and Tang et
al. [79] used many graph division methods in DPL for reducing the scale of the
problem. A method for identifying the native conflicts was proposed by Fang et
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al. [37]. The method by Tang et. al [79] achieved the most up-to-date results,

which are based on a polynomial time minimum cut algorithm.

The TPL layout decomposition problem and the problem with balanced
density are NP-complete, which were proved by Yu et al. [101,105]. Hence most
of algorithms for the TPL layout decomposition problem belong to heuristic
methods. A special case of the TPL layout decomposition problem is the prob-
lem where only row structure and standard cells are considered. A polynomial
time heuristic algorithm was proposed by Tian et al. [81] for this problem. This
was improved by Chien et al. [23].

For the general TPL layout decomposition problem, there are two kinds of
common approaches. The first is the methods operating in the feasible solution
space only, and trying to find a least possible upper bound on the minimum value
of the TPL layout decomposition problem. Among this kind of methods, Cork
et al. [27] proposed an algorithm based on the 3-SAT problem. The heuristic
method by Fang et al. [36] uses the line projection method to identify conflicts,
and then all edges of the conflict graph are weighted for designing algorithms.
At present, the heuristic graph matching method proposed by Kuang et al. [53]
achieves the fastest running time, in which a number of graph division methods

are introduced for reducing the graph vertex number.

The second approach is the semidefinite program relaxations of the TPL
layout decomposition problem by Yu et al. [101,105], which are continuous re-
laxations. In [105], Yu et al. formulated the TPL problem as a linear binary
program and a vector program. The vector program was further transformed to
a semidefinite program for finding a relaxation solution. Generally, a solution
of the relaxation problem is infeasible for the TPL problem, and is rounded to
a feasible one. An advantage of this method is that, a solution of the relax-
ation problem provides a lower bound, and the feasible solution by rounding
provides an upper bound on the minimum value of the TPL problem. Hence,

the solution quality may be estimated. However, since conflicts and stitches are
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considered simultaneously, the size of the relaxation problem is much larger, and

the solution time is much more.

Discrete relaxation has not been proposed for the TPL layout decompo-
sition problem. By considering the advantage of the relaxation method, we
propose in this chapter a discrete relaxation theory and the theory based lay-
out decomposition framework for TPL. In the framework, conflicts and stitch
insertions are considered separately. Our decomposition framework obtains a
decomposition solution in two steps. The first step focuses on finding a discrete
relaxation solution. Due to our relaxation by graph reduction tricks and stitch
insertions not considered at this step, the solution space is dramatically reduced,
and we can quickly find an optimal solution of the relaxation problem. At the
second step, the relaxation solution is legalized to a feasible solution of the TPL
layout decomposition problem. Experimental results and comparisons indicate
that our discrete relaxation based method is fast and effective. Specifically, for
some test benchmarks, optimal solutions are obtained according to our discrete

relaxation theory.

If stitch insertions are not allowed, then the TPL layout decomposition
problem is the 3-coloring problem, and our decomposition method still works
by deleting stitch insertion operations. Although the techniques used in our
method look like heuristic methods, they are carefully adopted or designed for
the discrete relaxation purpose. For example, the surface projection method
developed is used for finding some features in a layout which will be colored
prior. We believe our discrete relaxation idea and techniques could be applied

to other problems.
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2.2 Problem Formulation, Discrete Relaxation Theory,

and Layout Decomposition Framework

In this section, we present firstly the TPL layout decomposition problem.
Then we propose the discrete relaxation theory based on which our algorithm
for the TPL problem is developed. Finally, we give an overview of our TPL

layout decomposition framework.
2.2.1 Problem Formulation

We introduce two definitions as follows.

Definition 2.2.1 (conflict graph, C'G). The conflict graph is defined as an
undirected graph G(V, E), where V represents the set of vertices, and v € V
represents a feature. F is the set of edges, and e;; € E exists between two

features ¢ and j if the distance between them is less than min,,.

Definition 2.2.2 (sub-feature). One or more stitches are inserted into a feature,

and the feature is split into several parts, namely sub-features.

The TPL layout decomposition problem is to decompose an initial layout
into three masks via possible stitch insertions. The objective is minimizing the
numbers of conflicts and inserted stitches. Formally, it can be described as

follows.
Problem (F): TPL layout decomposition problem

Given: Layout L, the minimum coloring spacing min.s, the minimum fea-
ture size miny,, the minimum overlap margin min,,,, a constant o (0 < v < 1).
Find: Stitch insertions in features and assignment of features and sub-
features to three masks, such that |C| + «|S| is minimized, where |C| is the
number of conflicts occurring and |S| is the number of stitches inserted. The

locations of stitches should be legal.

Inserting a stitch legally into a feature means that: (i) the size of the
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Figure 2.2: A sample of legal stitch insertion.

generated sub-features should be larger than the minimum feature size ming,;
(ii) an inserted stitch is not near any corner of the feature; and (iii) the overlap
length is greater than the minimum overlap margin min,,,. Here overlap length
means that, stitch insertion position can be moved vertically or horizontally
without causing any new conflict, and the move length is called the overlap

length [53]. An example of a legal stitch is shown in Figure 2.2.

The above constraints are due to that, a very small sub-feature is easy to
generate overlay error [36,51,53]; a corner stitch may cause significant side effect
on printability; and similarly, if the overlap length of a stitch is less than min,,,,

then the stitch may cause side effect too [36,51,53].

In the problem, assigning features to three masks is equivalent to 3-coloring
of the conflict graph. Hence in the following, when saying coloring a vertex of
the conflict graph, it means assignment of the corresponding feature to a mask,
and vice versa.

2.2.2 Discrete Relaxation Theory

Definition 2.2.3 (discrete relaxation). Problem (RP):
2 = min{ff(2) : z € X%}
is a discrete relaxation of problem (P):

z=min{f(z) : z € X},
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(1) Discrete relaxation
optimal solution

Figure 2.3: Geometrical representation of discrete relaxation.

if there exists an optimal solution 2% of problem (RP), and there exists an

optimal solution z* of problem (P) such that f&(xf™*) < f(x*).

In the above definition, the function f# and the feasible set X must be
selected carefully. Generally, we should select an X% such that an optimal
solution of the relaxation problem (RP) could be transformed easily to a feasible

solution of the original problem (P).

Although Definition 2.2.3 can be applied without any assumption on the
feasible sets X and X, we restrict them to be discrete sets for our usage and
call the relaxation as discrete relaxation. By Definition 2.2.3, we immediately

have:

Proposition 2.2.4. If problem (RP) is a discrete relaxation of problem (P),

then 2f < 2.

Proposition 2.2.4 means that, by discrete relaxation we will obtain a lower

bound on the minimum value of the original problem. Specifically, we have:

Proposition 2.2.5. Suppose that problem (RP) is a discrete relaxation of prob-
lem (P). Let 2/ be an optimal solution of problem (RP). If x'* can be trans-
formed to a feasible solution z of problem (P), such that fZ(xf*) = f(z), then

x is an optimal solution of problem (P).

Proof. By Proposition 2.2.4 and the assumptions of this proposition, z* =

fR(x™) = f(z) < z. Since x € X, we have z < f(z). So f(z) = 2, which
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Figure 2.4: Our TPL layout decomposition framework.
means that = is an optimal solution of problem (P). O

The principle of using the above discrete relaxation theory is as Figure 2.3
shows. Firstly, we formulate a discrete relaxation problem (RP) for problem
(P) to obtain an optimal solution z'™* of (RP). And then, 2™ is legalized to a
feasible solution x of the original problem (P), and we have ff(z™*) < f(z) by
Proposition 2.2.4. If fB(zf*) = f(z), then by Proposition 2.2.5 we obtain an

optimal solution = of problem (P).

Although the above discrete relaxation theory looks simple, we carefully
design relaxation techniques for the TPL layout decomposition problem, and

the computational results are promising.
2.2.3 Overview of Layout Decomposition Framework

In Figure 2.4, we illustrate our decomposition framework for the TPL lay-
out decomposition problem. Firstly, according to the rule of minimum coloring
spacing, we transform an initial layout to a conflict graph using our new projec-
tion method, i.e., surface projection method. And then, we adopt two techniques
to reduce the conflict graph, which is a discrete relaxation. After that, the large

scale TPL layout decomposition problem is reduced to numerous small scale
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TPL layout decomposition subproblems.

At the discrete relaxation coloring step, a 0-1 program is constructed for
each reduced TPL problem, which is a discrete relaxation. Then, we solve the 0-1
program to obtain a discrete relaxation solution for each reduced TPL problem.
At the discrete relaxation step, stitch insertions are ignored. At the legalization
step, stitch insertion and backtrack coloring algorithms are respectively used to
legalize the discrete relaxation solutions. Finally, we color the removed features,
which are removed at the relaxation by graph reduction step. Details of the

decomposition framework are described in the following sections.

2.3 Surface Projection and K, Conflict Structure

In order to eliminate conflict edges in a layout, stitches might be introduced
to split a feature into several sub-features. But, conflict edges between some
features might not be totally eliminated by inserting stitches. We call these
conflict edges as non-resolvable conflicts, and call the corresponding conflict

sub-graph as non-resolvable conflict structure.

In this section, we develop a surface projection method for finding the
conflict features in a layout. The conflict features will be prior considered at
the discrete relaxation coloring step. Using the conflict features, the K, conflict
structures in a layout can be identified, which have an important property that
the conflict edges in the structures cannot be totally eliminated by inserting

stitches.

2.3.1 Surface Projection

Line projection method [51] has been popularly utilized for constructing
a conflict graph and finding stitch insertions for the DPL or TPL layout de-
compositions. Figure 2.5(a) shows an example of line projection of feature b on

feature c. However, we want to identify features which are critical and should
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Figure 2.5: Surface projection and line projection. (a) Line projection. (b)
Surface projection. (¢) An example shows that line projection cannot find inside
TCRT. (d) Surface projection is used to find TCRT.

be colored prior, and this forms a basis of our discrete relaxation method. For

this purpose, we develop the surface projection method.

Note that, the relation between two neighboring features is more than their
boundaries. Some useful relation may be inside the features. Using the informa-
tion, we want to identify the features at which non-resolvable conflicts are more
likely to exist, which might be colored prior. We develop a surface projection
method to mine the information. In order to present the method accurately,

some definitions are introduced as follows.

Definition 2.3.1 (conflict region, C'R). The conflict region of a feature is de-
fined as a 2D region around the feature but within the minimum coloring spacing

min,g.

Definition 2.3.2 (conflict rectangle, CRT). The conflict rectangle on feature
a by feature b is defined as the minimum rectangle enclosing the intersection of

feature a and the conflict region of feature b.

As illustrated in Figure 2.5(b), the shaded round region around feature b
is called the conflict region (C'R) of b, and the dashed box on feature ¢ is the
conflict rectangle C'RT resulted by b.

Definition 2.3.3 (triple conflict rectangle, TC'RT'). The triple conflict rectangle

on feature a is defined as a rectangle, which is the intersection of three or more
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conflict rectangles on feature a. Some adjacent features of feature a create these
conflict rectangles, and these adjacent features are called conflict adjacent

features (CAF') of feature a.

For any feature a, the line projection method can find all possible conflict
line segments on the peripheries of a, which are projections of the neighbouring
features. However, for some features, line projection may not find all possible
conflict regions inside the features, and then, it may not find the triple conflict
rectangles inside the features. An example is illustrated as Figures 2.5(c) and
2.5(d).

In Figure 2.5(c), line projection finds three 1D conflict line segments on the
four peripheries of feature c¢. In Figure 2.5(d), surface projection finds three 2D
conflict regions on feature ¢, and a triple conflict rectangle (TTC'RT), i.e., dashed
box, can be found inside ¢, which cannot be found by line projection. Detecting
triple conflict rectangle is crucial for finding conflict features and K4 conflict

structures, which will be presented in the next subsection.
2.3.2 Conflict Feature and K,; Conflict Structure

Definition 2.3.4 (conflict feature, C'F'). Feature a is called a conflict feature if it
satisfies the two conditions: (1) there exists a triple conflict rectangle TC' RT on

feature a; (2) the graph composed of feature a and its conflict adjacent features

(CAF) is not 3-colorable.

Definition 2.3.5 (K, conflict structure, K,CS). A graph structure is a Ky
conflict structure, if it is a K, structure, and all the four features are conflict

features C'F' and they are CAF each other.

By Definition 2.3.4, the feature ¢ in Figure 2.5(d) is a C'F, since there is
a TCRT on it; and ¢ and its conflict adjacent features a, b and d compose a
K. Similarly, features a, b, ¢ and d in Figure 2.6(a) are C'F' too. In addition,

the structure composed of features a, b, ¢ and d in Figure 2.6(a) is a K conflict
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Figure 2.6: Conflict features and a K, conflict structure.

structure K,C'S, in which the TCRT's in features b and ¢ cannot be identified
by the line projection method. Hence, our surface projection method can be
used to locate more unresolvable conflicts, since some conflict structures K,C'S

cannot be identified by the line projection method.

For a conflict feature, it has a property as follows.

Lemma 2.3.6. Suppose that feature a is a conflict feature, and features ay, as,
.., agy1 are the sub-features of feature a, where k is the number of stitches
inserted into feature a. Then at least one of features aq, ao, ..., aryq is still a

conflict feature.

Proof. 1f feature a is a conflict feature, then it has at least a TCRT. We insert
k stitches into feature a and split it into sub-features ai, as, ..., ar11. Suppose
that we first insert stitch s; into feature a and split it into two parts a; and
ay. Then there are two possible results: 1) if stitch sy cuts across the TCRT
on feature a, we have that both of the sub-features a; and as contain a new
TCRT; 2) otherwise, only one of a; and ay contains TC'RT. Next, stitches
are inserted into feature a one by one. At last, feature a is split into k + 1 sub-
features a, as, ..., axy1. Obviously, the number of sub-features containing T'C' RT
is nondecreasing. Hence, at least one of the sub-features a; contains T'C'RT', and
the sub-graph consisting of the sub-feature a; and the conflict adjacent features
CAF of feature a is not 3-colorable. By Definition 2.3.3, this completes the

proof. O
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Lemma 2.3.6 shows that, inserting stitches into a conflict feature cannot
make it be a non-conflict feature. Hence, when coloring, conflict features should

be colored prior. Especially, for a K, conflict structure, it has the following

property.

Theorem 2.3.7. Every K, conflict structure exists at least a non-resolvable

conflict.

Proof. Since a K,C'S is a K, structure, it is not 3-colorable, which means that
for any color assignment, at least a conflict exists in the K,;C'S. Furthermore,
since all the four features in a K, structure are C'F's, and by Lemma 2.3.6,
stitch insertions cannot eliminate the conflict in the K,CS. Hence a K, conflict

structure exists at least a non-resolvable conflict. O

Theorem 2.3.7 suggests that a K4 conflict structure exists a conflict which
cannot be eliminated by inserting stitches. To find potential conflicts in a layout,
it is important to identify the conflict features. Identifying the conflict features
can be done by the BF'S algorithm, which traverses the conflict graph. Further-
more, for every vertex v with TC'RT', the algorithm will find all K, subgraphs
containing v. Suppose that the maximum degree of vertices in a layout is d.
Then the runtime of determining whether there exists a subgraph containing v
is K is in time O(d®). Hence, the total runtime complexity for identifying C'F's

is in time O(nd®), where n is the number of features in a layout.

2.4 Discrete Relaxation Method for TPL Layout

Decomposition

Since it is hard to solve directly the TPL layout decomposition problem, we
propose a discrete relaxation method for finding a lower bound on the minimum

value of the problem, basing on the discrete relaxation theory.

In this part, we describe our discrete relaxation method for the TPL layout
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decomposition problem, which is to obtain a lower bound on the optimal value

of the problem.

2.4.1 Equivalent Formulation of Problem (F,) to (F;)

First, we formulate the TPL layout decomposition problem (Fy) to an equiv-
alent problem (P;). Here, we consider the TPL layout decomposition problem
by assigning features to three masks first, and then consider stitch insertions

into some features.

Suppose that G(V, E) is decomposed into four sub-graphs G;(C;, Ei),
Go(Cy, Ey), G3(Cs, E3), G4(R4, E4), where E; is the set of edges between
the features in C; (i = 1,2,3,4), respectively, and E; (i = 1,2,3) is an empty
set. After obtaining the decomposition Cy, Cs, C3 and Ry, we consider stitch
insertions for the features in R,. Then, the generated sub-features and the un-
splitted features in R, are assigned to classes C, C5 and C5 with the minimum

total number of conflicts in C, Cy and Cs.

Let S(R4) be the set of all possible plans of inserting stitches into the
features in Ry. Given C, Cy, C5, S € S(Ry), there are many ways of assigning
the generated sub-features and the unsplitted features in Ry to classes C, Cy
and C3. And different way of assignment will produce different conflicts. Here
we let T'(Cy, Cy, C3,.S) be the minimum total number of conflicts in C, Cy and

C3 among these ways of assignment.

Mathematically, problem (Fp) can be formulated equivalently as the follow-
ing problem (P):

min T(01702,0375)+(){|S| (21)
s.t. ifi,j € Cy, thene; ¢ £, k=1,2,3; (2.1a)
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where constant « is a weight parameter. In this chapter, we take o = 0.1, which

is as that in Yu et al. [105].

Let Xp,, Xp, be the solution spaces of problems (P) and (P;), and let
fo(zp,), fi(xp,) be the objective functions of problems (P,) and (P;), respec-

tively.
Claim 2.4.1. Problem (P;) is an equivalent formulation of problem (F).

Proof. Suppose that 2}, =(M;, My, M3)e Xp, is an optimal solution of problem
(Py), where M} (k = 1,2,3) includes the stitch free features and the sub-features
produced by stitch insertion plan S. Move all sub-features in M7, M;, M3 to
R,. After that, if there exists a conflict in M;, Mj or Mj, move a feature at
which the conflict occurs to R4. Repeating this operation will finally produce a

feasible solution (Cy, Cy, Cs5, S) of problem (P;). Obviously
fo(fﬁ}‘go) > T(Cl, OQ, Cg, S) + OZ|S|

Hence the optimal value of problem (P) is a lower bound on the optimal value

of problem (Fp).

Conversely, an optimal solution of problem (P;) is a feasible solution of
problem (Fp), which means that the optimal value of problem (Fp) is also a
lower bound on the optimal value of problem (P;). Combining the two cases

implies that Claim 2.4.1 holds. ]
2.4.2 Relaxation of Problem (F;) to (/%)

Next, we relax problem (P;) to a problem (P;) by discrete relaxation, which
is a 0-1 program whose optimal value provides a lower bound on the optimal
value of problems (P;) and (Fp). Problem size of the 0-1 program is significantly
less than that of the TPL layout decomposition problem, due to ignoring stitch

msertions.

Let (21, x2) be a two dimensional binary variable, which is used to express
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the color of vertex . When (z;1,x;2) = (0,1), it means ¢ € C4; similarly, when
(xi1,22) = (1,0), it means ¢ € Cy; and when (21, 242) = (1, 1), it means i € Cs.
However, when (z;1, z;2) = (0,0), it means that vertex i is uncolored, i.e., i € Ry.

Let w; be the weight of vertex . By Theorem 2.3.7, we know that a non-
resolvable conflict is more likely to exist at a conflict feature C'F. Hence a

conflict feature C'F’ should be assigned a greater weight. Specifically, let

{1, if 7 is conflict feature;
w; =

a, if 7 is not conflict feature.

Then we relax problem (P;) to the 0-1 program (P):

min D wi(l = z)(1 = xi2) (2.2)

eV

s.t. Tio — T + Tjo — xj1 < 1, Ve;; € E; (2.2a)
Til — Tig + Tj1 — Tjo < 1, Vei; € E; (2.2b)
Ti1 + Tig + x5 + 0 < 3, Vei; € (2.2¢)
(241, 252) € {0,1} x {0,1} VieV. (2.2d)

In the objective function,

0, if ¢ ¢ R4;

(= 2a){1 = 2a) {1, ifi € Ry

Hence the objective is minimizing the total weight of the vertices in R4. Con-
straints (2.2a)-(2.2c) are equivalent to Constraint (1la), which are used to force
that, if e;; € E, then vertices ¢ and j should not be in the same class C, Cs
or (3, respectively. Specifically, for (2.2a), if vertices ¢ and j are in Cj, then
e;j ¢ E; otherwise, (x;1, xi2) = (xj1,x52) = (0,1) violate Constraint (2.2a).
Furthermore, for an optimal solution (C7, Csy, C3, Ry) of problem (F,), the

following observation is obvious. Any feature in R, conflicts with a feature in

34



A5 o Pt 1) 36 BE T R XA =) 20 A T I

Ci, 1= 1,2, 3, respectively; otherwise it will be moved to C;, and we get a better

solution.

From the formulation of program (P), it can be seen that the difficulty of
resolving conflicts is considered by assigning weights to vertices. This difficulty
has also been addressed by Fang et al. [36], in which weights are assigned to
edges.

Next, we discuss the relationship between problems (P;) and (FP). For any
optimal solution zp, =(C7, C5, C3, S*) of problem (P;), we suppose without loss
of generality that, if a feature : € R} =V — C} U C5 U (3 can be moved to CT,

C3 or C3 without causing conflicts, then it has been moved.

For the convenience of description, we divide the features in R} into two
classes, UCF and UNCF, where UC'F is the set of uncolored conflict features,

and UNCF is the set of uncolored non-conflict features.

Lemma 2.4.2. For any optimal solution 2}, =(CY, C3, C3, S*)€ Xp, of problem
(Py), if a feature ¢ € UCF, then there exists at least a conflict occurring at ¢

which cannot be eliminated by inserting stitches.

Proof. Suppose that feature ¢ belongs to UCF. Then ¢ is a conflict feature,
1 € Rj;, and at least a conflict will occur at feature i. By Lemma 2.3.6, if
stitches are inserted into feature i, then one or more sub-features of feature ¢
are conflict features, and there still exists at least a conflict. Hence, at least a

conflict occurs at feature ¢ which cannot be eliminated by inserting stitches. [J

Note that, given an optimal solution zp =(C}, C5, C3, S*) of problem
(P1), when calculating T'(z7, ), the features and sub-features resulted by stitch
insertions S* of features in R} are assigned optimally to C}, C5 or C3. In
this case, some features in R} will contribute conflicts, we call them Occurring
Conflict Features (OCF); and some features in R} will not contribute conflicts,
we call them Not Occurring Conflict Features (NOCF). Obviously, OCF U
NOCF = R}, and |OCF|+|NOCF| = |Rj|.
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Let fi(zp,) be the objective function of problem (P;), and let fo(xp,) be
the objective function of problem (P;). By the above assumptions, the following

result can be deduced.

Theorem 2.4.3. Given an optimal solution 2} =(C7, C5, C3, S*) of problem

(Py), there exists an optimal solution z}, of problem (P) such that fi(zp,) <

fi(zp,).

Proof. Suppose that zp = (Cf, C5, C3, §*) € Xp, is an optimal solution of
problem (P;). It is obvious that [UNCF|+ |UCF| = |R}|. By Lemma 2.4.2, we
know that every feature in UCF' contributes at least a conflict number. Hence
[UCF| < |OCF| < T(xp,). Let |Y| =T(xp,) — [UCF|. Obviously, |Y] > 0.

Moreover, every feature : € NOCF must be inserted s; > 1 stitches to
eliminate conflicts. So |[NOCF| < |S*|, and

UNCF| + [UCF| ~ T(x},) = |R}| — T(z3,)
< |R4* — |OCF| = INOCF| < |S*|.

Furthermore, since 0 < a = 0.1 < 1, we have

\[UCF|+a|lUNCF|
<|UCF|+ olUNCF|+ (1 —a)|Y]
=|UCF|+ Y|+ a([UNCF| - |Y]|)
=T(2p,) + a([UNCF|+ |UCF| —=T(x}p,))
< T(ah) +alS*| = filzp)-
According to the value of w;, for the solution zp, = (C}, C5, C5, R}) of problem

(P,), which is transformed from 7%, it is evidently that

falap,) =Y wi(l = xa)(1 — ) = [UCF| + o|UNCF|.

i€V
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Obviously, there exists an optimal solution z}, of problem (P) with

fa(@p,) < folzp,) < fi(xp,).
Hence, Theorem 2.4.3 holds. O]

By Claim 2.4.1, Theorem 2.4.3 and the definition of discrete relaxation, it
is obvious that problem (FP,) is a discrete relaxation of the TPL layout decom-

position problem (F). Specifically, we have

Claim 2.4.4. Suppose x5, € Xp, is an optimal solution of problem (/). If x5,

is legalized to a feasible solution zp, of problem (FP,), then

f2(2p,) < folwr,).

Specially, if fo(2},) = fo(zp,), then xp, is an optimal solution of the TPL layout

decomposition problem (Fp).

Furthermore, we have two special cases in which optimality of the TPL

layout decomposition problem can be verified.

Claim 2.4.5. Suppose N is the number of K, conflict structures in a layout. If
there exists a solution xp, of problem (P,) with conflict number N, then zp, is

a minimum conflict solution of problem (Fp).

Proof. Since every K, conflict structure contributes at least a conflict, the layout
with N K4 conflict structures exists at least N conflicts. Hence the solution zp,

with conflict number N is a minimum conflict solution of problem (F). O

Claim 2.4.6. Let v, € Xp, be an optimal solution of problem (P,). If every
feature ¢ € UNC'F' can be inserted at most s; = 1 stitch to eliminate conflicts,
and every feature + € UCF contributes at most a conflict number, then z7p,
together with the stitch insertion into every feature ¢ € UNC'F is an optimal

solution of problem (F).
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Proof. For the optimal solution z7, of problem (P), if every feature i € UNCF
can be inserted at most s; = 1 stitch to eliminate conflicts, and every feature ¢ €
UCF contributes at most a conflict number, then UCF = OCF and UNCF =
NOCF'. Thus the total conflict numbers |C| = |OCF| = |UCF|, and

S|= > s =|NOCF|=|UNCF|.
1iENOCF
So
\UCF| + o|UNCF| = |C| + oS,

and

eV
Hence, ', together with the stitch insertion into every feature i € UNCF is an

optimal solution of problem (Fj). O

Problem (F,) is a nonlinear 0-1 program, which is generally difficult to solve
in large scale cases. However, our relaxation via graph reduction techniques pro-
posed in Section 2.6 can reduce the conflict graph to many small size independent
components. Thus problem (P;) on the small size independent components can
be solved easily. Specifically, we adopted the Branch-and-Bound method in the
software package GUROBI [3] to solve the problem on the small size independent

components.

Actually, our 0-1 non-linear program (P) can be linearized equivalently to
the 0-1 linear program (P;) as follows by introducing new variables and con-

straints:
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min Z W;Ti3 (2.3)

2%

s.t. Tig — Ty + Tjo — i < 1, Ve € E; (2.3a)
Ti1 — Tig + T — Tjo < 1, Vei; € E; (2.3b)
Ti1 + Tio + x5 + 2j0 < 3, Ve;; € E; (2.3c)
1 — 2 — 240 < @43, VieV; (2.3d)
(zi1,52) € {0,1}°, 235 € {0,1}, Vie V. (2.3¢)

In the above formulation, Constraint (2.3d) is used to force that, if z;; = 0 and
ZTip = 0 then x;3 = 1; otherwise x;3 = 0, since the objective is minimization
and w; > 0. However, we did not adopt the 0-1 linear program (P3) in our
decomposition flow, since it uses more variables and constraints than the 0-1
non-linear program (F,), and the software package GUROBI [3] is faster on the

small scale program (P,) than on program (Pj).

The 0-1 linear program (P3) is a formulation of the TPL layout decompo-
sition problem (Fp) without stitch insertions. In [105], Yu et al. proposed an
exact 0-1 linear program formulation of the TPL layout decomposition problem
(Fy). If forbidding stitch insertions, their formulation is reduced to the following

program (Py),
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min Z Cij (2.4)

e €
s.t. Ti1 + Tp0 < 1, VieV, (2.4a)
T+ 251 < 1+ ¢, Vei; € E; (2.4b)
(1—zin)+ (1 —z5) < 14cj, Ve;; € E; (2.4¢)
Tio + Tjo < 1+ ¢4j9, Vei; € I (2.4d)
(1 —2i0) + (1 —2j2) <14 cijo, Ve;; € E; (2.4e)
cij1 + Cij2 < 1+ ¢y, Vei; € E; 2.4f)
Ti1, Tz, Cij1s Cij2, Cij € {0,1}, Vi, j e V. (2.4g)

However, it can be seen that program (Pj) uses 3|V| variables and |V| +
3| E'| constraints, while program (Py) uses 2|V| + 3|E| variables and |V'| + 5| E]
constraints. Hence, if forbidding stitch insertions, our 0-1 linear program (Ps)

uses less variables and constraints than program (Py).

We solve the discrete relaxation problem (P;) to obtain a relaxation solu-
tion. And the relaxation solution will be legalized to a feasible solution (M,
M,, Ms) of problem (P,) with stitch insertions. The feasible solution (M;, M,
M3) may not be an optimal solution of problem (FP,). However, by Claim 2.4.4

or Claim 2.4.6, in some cases it will be.

2.5 Legalization

For every independent component G of the conflict graph got after graph
reduction proposed in Section 2.6, we obtain a relaxation coloring solution from
program (P,). Then, in order to obtain a final mask assignment of TPL lay-
out decomposition, the discrete relaxation solution should be legalized. For an

independent component GG, the legalization proceeds as follows.
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If in the coloring solution (C4, Cs, Cs, Ry) of problem (P), Ry # 0, then
to eliminate conflicts, we introduce one-stitch first insertions on the features in
R4. Details of the optimal one-stitch insertion are described in Section 2.5.1.
Furthermore, if there exits a feature © € UNC'F which cannot be inserted at
most s; = 1 stitch to eliminate conflicts, then the solution obtained from the
relaxation coloring solution may not be optimal for problem (F,). In this case,
we propose a backtrack coloring method to obtain another better relaxation
solution (Cy,C5,C5, R;). And then we consider dichotomy stitch insertion on

the new solution. The details are shown in Section 2.5.2.
2.5.1 Stitch Insertion

Due to conflicts, the features in the set R, of a relaxation solution are
uncolored. And the features might be inserted stitches to eliminate conflicts.
Since our objective is that, these features should be colored with the minimum
|C|+«|S], we should find stitch insertions into the features in Ry, and then assign
their sub-features to the three masks. An algorithm for finding all candidate one-
stitch insertions on a feature a is shown as Algorithm 2.1. Furthermore, if we
need to insert multiple stitches into feature a, then we execute Algorithm 2.1 on

the sub-features of feature a iteratively.

Algorithm 2.1 Candidate one-stitches finding

Input: feature a in Ry, its adjacent features and their colors;
Output: all candidate one-stitch insertions on a;
1: for every adjacent feature of feature a do
2:  calculate the C'RT's on feature a caused by its adjacent features, and store
CRTs in CRT Set,;
end for
for every CRT € C'RT Set do
CSEs=genCSE(CRT);
store CSFEs in CSESet;
end for
for CSEs € CSESet do
if splitting feature a into two sub-features along C'S E satisfies Conditions
1, 2 and 3, then store the C'SFE into candidate stitch set COSSet;
10: end for
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In the algorithm, firstly we find all conflict rectangles (CRT's) on feature a
(Line 2). A C'RT consists of four edges, each edge of C'RT generates a Checking
Stitch Edge (CSE). A CSE of feature a is a line segment whose two end-
points are on the boundary of feature a, and feature a could be split into two
sub-features as long as the split along the C'SE satisfies the following three

conditions:

Condition 1. Sizes of the generated sub-features should be larger than

the minimum feature size minyg;

Condition 2. A candidate stitch insertion is not near a corner of feature

a. Overlap length should not be less than the overlap margin min,,,.

Condition 3. The number of conflict edges connected to generated sub-

features is less than the number of conflict edges connected to feature a.

Conditions 1 and 2 are used to make the locations of stitches legal. Con-
dition 3 indicates that inserting a stitch along the C'SE will eliminate some

conflicts, and then generate a better layout decomposition.

In the algorithm, the function genCSE(CRT) refers to generating four
CSEs of a conflict rectangle CRT (Lines 4-7). If along a C'SE the feature
a could be split into two sub-features satisfying the three conditions, then the

CSE is a candidate stitch insertion (Lines 8-10).

After obtaining all candidate stitch insertions in COSSet, we only keep
those candidate stitches which may generate sub-features with the minimum
conflict number, and the others are deleted. Then we find an optimal stitch
in COSSet for feature a, and split feature a along the optimal stitch into sub-
features a; and as. The optimal stitch is based on a criterion cut_cost for evalu-
ating every stitch, which is the increased number of edges of the conflict graph

after splitting feature a along the stitch.

Note that, the sub-features a; and as of feature a got by splitting feature a

along stitch s will be assigned different colors. Suppose that b; is an uncolored
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feature and adjacent to feature a, i.e., eq, € E. If €45, € E and e,y € E, then
splitting feature a along stitch s will increase the degree of feature b; by 1, and

we let cut_cost,, = 1. So the function cut_cost(s) of stitch s is formulated as

cut_cost(s) = Z cut_costy,,

where

1, eqp, € E and eg,, € E;
cut_costy, = )
0, otherwise.

Obviously, cut_cost(s) > 0. An optimal one-stitch is with the minimum cut_cost(s).
Our empirical experiments indicate that most of features in U NC'F" have optimal

one-stitches with cut_cost(s) = 0.

For every feature in R4, Algorithm 2.1 is used to find all candidate one-
stitch insertions, and all optimal one-stitch insertions are found based on the
above criterion. After that, the features in R, with optimal one-stitch insertions
are split along their optimal one-stitches respectively, and the obtained sub-
features are colored legally. Then the conflict graph G, the sets C, Cy, C5 and
R, are updated accordingly. If conditions of Claim 2.4.6 are satisfied, then the
obtained coloring solution is optimal for the TPL layout decomposition problem;

otherwise, we perform the process of backtrack coloring in Section 2.5.2.

2.5.2 Backtrack Coloring

To obtain a better legal solution, a backtrack coloring algorithm is proposed
in this subsection. Similar backtrack method was introduced by Yu et al. [103] to
address the TPL aware detailed placement problem, which is fast and effective
on small size graphs. Let = = (C4, Cy, C3, Ry) be a relaxation coloring solution
of independent component G got by program (P,). We introduce a set WOSF
to represent the features in UNCF which cannot be inserted at most s; = 1

stitch to eliminate conflicts. We try to find a better relaxation coloring solution
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Algorithm 2.2 Backtrack coloring

Input: independent component G, coloring solution x = (Cy,Cy, C3, Ry) by
program (2), subsets X’ and X" of coloring solution space of G;
Output: another coloring solution z* of G,

1: for every 2’ = (C1,C%, C4, Ry) € X' do

2:  if there exist one-stitch insertions such that WOSF = () then
3 x*=a;

4 break;

5:  end if

6: end for

7. if WOSF = () then

8 return z*;

9: else
10:  for every 2" = (CY,CY,CY, R)) € X" do
11: calculate the decomposition cost of 2”: cost(z") = |C| + «|S|;
12: if find a less cost solution x” then
13: if cost(a") == ), p, wi then
14: x* = 2”; Break;
15: end if
16: x*=a";
17: end if

18:  end for
19: return z*;
20: end if

z* = (CY,C35,C5, R;) of G by Algorithm 2.2, and then insert stitches into the

features in Rj.

In Algorithm 2.2, inputs X’ and X" are two subsets of coloring solutions of
program (2.2), which are obtained and stored at the solution stage of program
(2.2) by the Branch-and-Bound method. Every solution 2’ = (C1, C%, C%, R))) €
X' satisfies that R), = Ry, here R, is a part of the coloring solution x of
program (2.2), which is an input of Algorithm 2.2. And every solution x” =
(CY,C8,CY R)) € X" satisfies that R] # R4 and there are no conflict features
in Rj.

Theoretically, the number of solutions in X" generated by the Branch-and-
Bound method may be exponential. However, there are few non-conflict features

in a dense layout. Moreover, for a sparse layout, after graph reduction, the size
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of every resulting connected component is small. These means that |X”| is not
too large and the storage of X" is tolerable. The situation for X’ is similar. To
make Algorithm 2.2 faster, we might only store solutions nearing to the coloring
solution x of program (2.2) in the Branch-and-Bound process, to X’ and X"

respectively.

Algorithm 2.2 firstly scan all solutions in X’ of G (Lines 1-6). For every
new coloring solution (C},C%,C%, Ry), we enumerate all candidate one-stitch
insertions on features in Ry by Algorithm 2.1, and check whether the criterion
WOSF = () is satisfied (Line 2). If a solution z* with WOSF = 0 is found,
then a condition of Claim 2.4.6 is satisfied, and we stop the backtrack coloring;
otherwise, all solutions in X” will be scanned to find another better one (Lines
10-19), and we have another break criterion to end the scan (Line 13). This
criterion means that, if the algorithm has found a solution with cost(z”) =

> icr, Wi, which is the optimal value of Problem (2.2), then it is optimal for

problem (1) and it does not need to scan further.

Note that stitch insertions should be found before calculating cost(z”) =
|C| + «|S| (Line 11). Here, we consider multiple stitch insertions more than
one-stitch insertions for eliminating more conflicts. Inserting multiple stitches
into a feature a means that we execute Algorithm 2.1 on the sub-features of
feature a iteratively. Main steps for finding candidate multiple stitch insertions
are similar to those in Algorithm 2.1, and the details are omitted here. Figure

2.7 shows two examples of backtrack coloring.

2.6 Relaxation Via Graph Reduction

In this section we introduce several graph reduction techniques to reduce
the conflict graph to small size subgraphs, and thus achieve a relaxation of the

TPL layout decomposition problem.

Using some rule, we remove some vertices in the initial conflict graph
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Figure 2.7: Two samples of backtrack coloring. (a)(c) Initial illegal coloring
solutions. (b)(d) Feasible solutions after backtracking.

G(V,E), and finally get some small size disconnected subgraphs. After that,
we solve the TPL problem on the subgraphs to obtain a mask assignment. Sup-
pose that z is a mask assignment of G(V, E). Obviously, the optimal value of
the TPL problem on the subgraphs is not more than the optimal value of the
original problem. Hence the mask assignment problem on the subgraphs is a
relaxation problem of the mask assignment problem of G(V, E). Theoretical
results of this relaxation are similar to those in Section 2.4.1, and are omitted

here.

Removed vertices should be selected carefully from the initial conflict graph.
A rule is that, after mask assignment of the subgraphs, the removed vertices can
be colored easily. The vertex removing techniques in this chapter are listed as

follows.

e Vertex with degree less than three removal [36,53,105];

e Contained vertex removal.

After vertex removal from the initial conflict graph, independent compo-
nents must be calculated for constructing subgraphs [36,53,105]. Independent
components calculation and vertex with degree less than three removal have

been used popularly in the previous TPL layout decomposition works. Here,
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Figure 2.8: An example of vertex removal. (a) The initial graph. (b) The
remainder graph after removing contained vertex g.

we focus on the contained vertex removal technique. Firstly we introduce the

definition of contained vertex [63].

Definition 2.6.1 (contained vertex). Given a graph G(V, E), for a pair of ver-
tices i,j € V, suppose that e;; ¢ E and A(i) C A(j), where A(7) and A(j) are
the set of adjacent vertices of vertices ¢ and j, respectively. We call that vertex
¢ is contained in vertex j, vertex i is called a contained vertex, and j is called a

containing vertex.

In Figure 2.8(a), vertex ¢ is a contained vertex, since e, ¢ E, and A(g) =
{d, f} C Ale) = {b, d, f}.

We find a contained vertex and its containing vertices in the graph after
the vertex with degree less than three removal, and remove it from the graph.
This process is repeated until no contained vertex found. The time complexity
of removing all contained vertices is O(d*|V]), where d is the maximum vertex

degree of the graph.

The vertex removals are performed before the discrete relaxation coloring
stage. After obtaining the mask assignment of the remainder graph, these re-

moved vertices are still uncolored, and need to be assigned to masks.

A contained vertex is prior assigned to the same mask as one of its contain-
ing vertices. For the other removed vertices, we color them in the reverse order
of removing them at the vertex removal stage. Since the features in the remain-
der graph are well colored, it is easy to assign colors to the removed vertices.

To achieve final coloring, if needed, we will insert stitches into them or perform
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backtrack coloring as in Section 2.5.2 again. In all, the removed features will be

assigned to appropriate masks with the minimum number of conflicts or stitches.

Note that a removed vertex might have several optional colors during col-
oring. That is, no matter which color is assigned to the feature, no conflict
will be generated. We call this feature as a color-optional-feature. Since a well
balanced decomposition is benefit for manufacturing [62,101], here we consider
global density balance for layout decomposition. We define

max {A;, Ay, A}
min {Al, AQ, Ag}

den =

as our density balance measurement, where Ay (k = 1,2, 3) is the total area of
features on the k—th mask. During the process of removed feature coloring, a
color-optional-feature will be assigned a color which may keep the minimal den-
sity balance measurement. This strategy benefits to the global density balance

of the three masks.

2.7 Experimental Results

In order to evaluate our TPL decomposition method, we tested it on the
ISCAS-85 & 89 benchmarks provided by Yu et al. [105]. The circuit sizes of the
benchmarks range from 1109 to 168K. The algorithms were programmed in C++
and run on a personal computer with 2.4GHz CPU, 16GB memory and the Linux
operating system. For problem (P,), we adopted the Branch-and-Bound code
for nonlinear integer programming in the package GUROBI [3] as our nonlinear
0-1 program solver. For comparing with previous TPL decomposers, we set
the parameter values the same as those in previous works. More precisely, the
minimum feature size ming, and the overlap margin min,,, were set as 10nm,

and the weight parameter a was set as 0.1.

We performed two experiments to adequately demonstrate the effectiveness

of our discrete relaxation based decomposition method. Test results of the first
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experiment are compared with those of the state-of-the-art TPL decomposers
[36,53,101]. Test results of the second experiment are compared with those of
the state-of-the-art TPL decomposers [36, 105, 109]. Since the binaries of the
compared decomposers are not available to us, the test results of the state-of-

the-art TPL decomposers are quoted from the respective publications directly.

2.7.1 First Experiment

In this experiment, we tested our decomposition method on the benchmarks
with smaller minimum coloring spacing min.. More precisely, the minimum
coloring spacing min., was set as 120nm for benchmarks C432-C7552, and as

100nm for benchmarks S1488-S15850. The test results are listed in Table 2.1.

Table 2.1: Test results of our decomposition method with min.; = 120 / 100nm

Circuits  #IC  #RIC Ratio #UCF #UNCF #WOSF Den

C432 123 4 1.50 0 4 0 1.02
C499 175 0 - 0 0 0 1.37
C880 270 7 1.62 0 7 1 1.09
C1355 467 3 1.50 0 3 0 1.13
C1908 507 1 1.50 0 1 0 1.21
2670 614 7 1.54 0 6 0 1.25
3540 827 9 1.50 1 8 0 1.16
C5315 1154 9 1.50 0 9 0 1.23
6288 2325 171 1.55 0 191 16 1.01
C7552 1783 22 1.51 0 22 1 1.18
51488 274 2 1.50 0 2 0 1.03
538417 5298 74 1.51 19 o4 0 1.00
535932 15804 84 1.56 44 40 1 1.00
538584 16235 152 1.51 36 116 1 1.00
S15850 13226 131 1.52 34 97 1 1.00

2.7.1.1 Analysis of Our Test Results

In Table 2.1, the data in the columns “#IC” and “#RIC” are the numbers
of independent components of the initial conflict graphs, and the numbers of
independent components of the remainder graphs after graph reduction, respec-

tively. The data in the column “ratio” are the ratios between the numbers of
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Table 2.2: Experimental result comparisons with min.; = 120 / 100nm

From [36] From [53] From [101] Ours
Circuits CPU CPU CPU CPU
#C #S Cost (s) #C #S  Cost (s) #C #S  Cost (s) #C #S  Cost (s)
C432 0 6 0.6 0.01 0 4 0.4 0.01 0 4 0.4 0.2 0 4 0.4 0.01
C499 0 0 0 0.01 0 0 0 0.01 0 0 0 0.2 0 0 0 0.01
C880 1 15 2.5 0.01 0 7 0.7 0.01 0 7 0.7 0.3 0 7 0.7 0.02
C1355 1 7 0.7 0.02 0 3 0.3 0.01 0 3 0.3 0.3 0 3 0.3 0.02
C1908 1 0 0 0.04 0 1 0.1 0.01 0 1 0.1 0.3 0 1 0.1 0.04
C2670 2 14 3.4  0.06 0 6 0.6 0.04 0 6 0.6 0.4 0 6 0.6 0.06
C3540 2 15 3.5 0.08 1 8 1.8 0.05 1 8 1.8 0.5 1 8 1.8 0.07
Ch315 3 11 4.1 0.11 0 9 0.9 0.05 0 9 0.9 0.7 0 9 0.9 0.11
C6288 19 341 53.1 0.13 14 191  33.1 0.25 1 213 22.3 2.7 0 204 204 0.16
C7552 3 46 7.6 0.17 0 22 2.2 0.1 0 22 2.2 1.1 0 22 2.2 0.17
S1488 0 4 0.4 0.03 0 2 0.2 0.01 0 2 0.2 0.3 0 2 0.2 0.03
S38417 20 122 32.2 0.62 19 55 245 042 19 55 24.5 7.9 19 54 244  0.60
S35932 46 103 56.3 2.13 44 41 48.1  0.82 44 48 48.8 214 44 40 48.0 1.70
S38584 36 280 64.0 2.26 36 116 476 0.77 37 118 488 222 36 116 476 1.81
S15850 36 201 56.1 214 36 97 457 076 34 101 441 20 34 97 437 1.73
Avg. 11.3 777 19.0 0.52 10.1 374 13.75 0.22 9.07 39.8 13.06 5.23 &89 382 1275 0.44
Ratio 1.49 1.19 1.08 0.50 1.02  10.06 1.00 1.00
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edges and the numbers of vertices in the remainder independent components,
respectively. From Table 2.1, the data in the column “#RIC” are small, com-
pared with the data in the column “#IC”. Specifically, the average #RIC is
only 1.1% of #IC. Hence we can conclude that our graph reduction methods are

effective.

The data in the column “#UCF” of Table 2.1 are the numbers of uncolored
conflict features by our algorithm on the remainder graphs of the benchmarks.
By Lemma 2.4.2, we know that #UCF is a lower bound on the minimum conflict
number of TPL. The data in the column “#C” of Table 2.2 are the total conflict
numbers found by our method on the benchmarks. Comparing #UCF with
#C, it is obvious that both of them are equal for every benchmark. Hence,
our decomposition method found results with the minimum conflict numbers
for these benchmarks. Moreover, if #UCF=#C, then every feature in UCF

contributes at most a conflict number.

The data in the columns “#UNCF” and “#WOSF” of Table 2.1 are the
numbers of uncolored non-conflict features, and the numbers of uncolored non-
conflict features without one-stitch insertion, respectively. Table 2.1 shows that
all benchmarks C432-C5315 are with #WOSF=0 except C880, and benchmark-
s 51488 and S38417 are with #WOSF=0. Since #UCF=+#0C for benchmarks
(C432-C5315 except C880 and #UCF=+#C for benchmarks S1488 and S38417,
every feature in UC'F' contributes at most a conflict number for these benchmark-
s. Hence according to Claim 2.4.6, we have obtained a minimum cost solution,

i.e., we have achieved optimal decomposition costs for these benchmarks.

From the column “Den” in Table 2.1, it can be seen that most of benchmarks
have Den close to 1, i.e., the total areas of the obtained three masks are almost

equal. That is, the densities of our results are well balanced.

2.7.1.2 Comparing with Other TPL Decomposers

In Table 2.2, we list the test results of our decomposition method and the

state-of-the-art TPL decomposers [36,53,101], on the benchmarks C432-C7552
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and S1488-S15850 with min., = 120/100nm. In the table, the data in the
columns “#C” and “#S” denote the conflict numbers and the stitch numbers of
the final results, respectively. And the data in the column “Cost” are calculated
in the same way as that in problem (P;) and references [36,53,101]. The data
in the columns “CPU(s)” are the running times of our decomposition method

and the decomposers [36,53,101], respectively.

We compare in Table 2.2 our test results with those of decomposers in
[36,53,101]. From the table, we can see that our method achieves the best TPL
decomposition result for every benchmark among the compared decomposers.
The last row in Table 2.2 lists the average #C, #5S, Cost and runtime; and lists
the Cost, runtime ratios based on the results of our TPL layout decomposition
method. Comparing with the results achieved by Kuang et al. [53], which is
the fastest decomposer, we reduce the average conflict number by 12%, and
the average cost by 8%. For the state-of-the-art decomposer proposed by Yu
et al. [101], the average cost is 2% more than ours, and the running time is
9 times more than ours. These comparisons validate the effectiveness of our

decomposition method.

It must be remarked that the compared decomposers were run on different
platforms. In [101], the platform is a personal computer with 3.0GHz CPU and
32GB RAM; in [36], the platform is a personal computer with 2.93GHz CPU
and 48GB RAM; in [53], the platform is a personal computer with 2.39GHz
CPU and 48GB RAM. But our platform is a personal computer with 2.40GHz
CPU and 16GB RAM, which is almost the worst.

2.7.1.3 Scalability of Our Method

To analyze scalability of our decomposition method, Figure 2.9 presents
the relationship between the number of features and the running time of our
decomposition method. The figure is based on our computational results on the

ISCAS-85 & 89 benchmarks with min., = 120nm. In the figure, the bottom
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Table 2.4: Experimental result comparisons on dense layouts with min., = 160nm

From [36] From [105] From [109] Ours

Creuits "0 %S Cost Im(%) #C  #S  Cost Tm(%) #C #S Cost Im(%) CPU(s) #C #S Cost CPU(s)
C432 94 12 95.2 19.9 89 11 90.4 15.3 79 20 81.0 5.8 2.18 73 33 76.3 0.90
C499 350 17 351.7 19.5 324 29 326.9 13.4 289 49 293.9 3.7 6.15 274 90 283.0 5.49
880 230 36 2336 450 193 16 1946 341 136 90 1450 115 450 116 123 1283  3.87
C1355 227 50 2320 417 193 29 1959 30.8 135 87 143.7 58 713 123 123 1353  3.55
C1908 287 51 2921 409 210 30 213.0 190 176 93 1853 6.9 107 163 95 1725  2.38
C2670 810 122  822.2 40.1 633 57 638.7 22.9 473 238  496.8 0.8 21.4 463 297  492.7 12.3
C3540 810 156  825.6 46.4 732 62 738.2 40.0 489 349  523.9 15.5 25.2 394 487 4427 5.85
C5315 1313 201 1333.1 33.7 1181 94 11904 257 933 404 9734 92 381 830 529 8839 105
C6288 879 219 9009 29.2 816 40 820.0 223 731 293 760.3 162  40.6 603 344 6374  11.1
C7552 1585 380 1623  30.8 1275 506 1325.6 152 1100 642 11642 3.5 559 1054 697 11237 17.3
S1488 615 108 625.8 24.3 602 34 605.4 21.8 443 215 464.5 -2.0 10.4 446 277 473.7 27.8
S38417 7748 534 7801.4 40.4 4908 952 5003.2 7.1 4473 2408 4713.8 1.4 197 4394 2524 4646.4 66.5
S35932 23767 1404 23907.4 39.6 14412 3120 14724.0 1.9 13101 7137 13814.7 -3.8 722 13751 6921 14443.1 813
S38584 20106 1392 202352 44.7 11622 2639 11885.9 5.8 11187 6097 11796.7 51 654 10564 6301 11194.1 102
S15850 22561 1915 227525 37.8 15196 2613 15457.3 8.4 13405 6997 14104.7 -0.3 713 13425 7282 141532 591
Avg. 35.6 18.9 5.3
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Figure 2.9: Running time vs the number of vertices.

dotted line is the plot of function y = 0.7x; the up dotted line is the plot of
function y = 1.4z; and our runtime picture is the middle solid line. This fully
illustrates that our discrete relaxation based decomposition method is almost a

linear-time decomposer for the tested benchmarks.

2.7.2 Second Experiment

To further evaluate effectiveness and scalability of our discrete relaxation
based decomposition method, we performed additional experiments of testing
our method on the benchmarks S1488-S15850 with min., = 120nm, and on the
ISCAS-85 & 89 benchmarks with minimum coloring spacing min.s = 160nm. It
is obvious that the numbers of conflict edges of these graphs are more than those
in the first experiment, and the conflict graphs of these benchmarks are more
dense. The test results of our decomposition method and the compared decom-
posers are listed in Table 2.3 and Table 2.4 respectively, where “Im(%)” denotes
the cost reduction percentage by our method comparing with the corresponding

method. The data in the columns “CPU(s)” are the runtimes of the algorithm
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in [109] and our method, respectively. Since the binaries of [105] and [36] are

not available to us, we do not list their runtimes.

From Table 2.3, comparing with [36], [105] and [109], our method achieves
considerably cost reduction for every benchmark. Averagely, the cost reduction
percentages by our method comparing with the corresponding methods in [36],
[105] and [109] are 33.9%, 55.6% and 59.6%, respectively. From Table 2.4, the
total costs of benchmarks S1488-S15850 by our decomposition method are larger
than those in Table 2.4 respectively, due to the dense structures. The last row
of Table 2.4 lists the average improvements of the cost reduction percentage by
our method comparing with the corresponding methods in [36], [105] and [109],
which are 35.6%, 18.9% and 5.3%, respectively. Comparing runtime between
[109] and our approach, it can be found that, our approach is faster than the
method in [109] on most of the benchmarks, especially on the sparse layouts.

It must be remarked that the platform in [109] is a personal computer with

2.66GHz and 4GB RAM, which is better than ours.

Finally, for the TPL layout decomposition problem, it is obvious that min,,
is a main parameter to control the density of the conflict graph. In this ex-
periment, we have achieved greater improvement than the first experiment, in
which the conflict graph is sparser. This demonstrates that our discrete relax-

ation based decomposition method is more effective on the dense layouts.

2.8 Summary

In this chapter, we have proposed a discrete relaxation theory, and have de-
veloped a discrete relaxation based decomposition framework for the TPL layout
decomposition problem. Although the line projection method can construct the
conflict graph of the problem, we have developed a surface projection method
for identifying features which are critical and should be colored prior, and this

forms a basis of our discrete relaxation method.
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To solve the TPL layout decomposition problem, our discrete relaxation
based decomposition method relaxes the problem in two steps. Firstly, the con-
flict graph is reduced to small size subgraphs by two graph reduction techniques,
which is a discrete relaxation of the TPL problem. After that, the TPL prob-
lem on the small subgraphs is relaxed to a nonlinear 0-1 programming problem
by ignoring stitch insertions and assigning weights to features. To legalize an
optimal solution of the relaxation problem to a feasible one of the TPL layout
decomposition problem, some techniques have been carefully adopted, e.g., the
one-stitch first insertion, backtrack coloring. Experiments on the tested bench-
marks show that our decomposition method is efficient and effective, compared
with the state-of-the-art decomposers. Moreover, by our theoretical results, we
have obtained optimal decompositions for some benchmarks. The developed dis-
crete relaxation based decomposition method for TPL is successful. We believe

the idea can be applied to other problems.
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Chapter 3 Two-Stage Decomposition for
Hybrid E-Beam and Triple Patterning
Lithography

3.1 Introduction

The major bottleneck that hinder faster and more powerful processor de-
velopment is the design and manufacture technologies of integrated circuit (IC).
At present, many manufacture technologies have been developed [86], such as
the 193nm ArF immersion optical lithography (ArF-IOL) and the related mul-
tiple patterning lithography (MPL), electron beam lithography (EBL), directed
self-assembly (DSA), and extreme ultraviolet lithography (EUVL). EUVL is
considered as a promising technology for next-generation lithography. Howev-
er, due to various obstacles, EUVL still cannot be put into mass IC manufac-
ture [18]. Currently, MPL is among the most popular, which is high throughput
and low optimal exposure [13]. On the contrary, E-Beam lithography has lower
throughput but good for random complex patterns [19]. Since a solo lithogra-
phy technology cannot achieve the measures (cost, throughput, timing et al.)
very well simultaneously, hybrid lithography is introduced recently. One of the
most promising technologies is the combination of MPL with EBL, which is a
novel and practical choice for manufacture of IC [78]. Comparing with a solo
lithography technology, hybrid lithography can produce better quality circuit
board [82,96].

LELELE style lithography, i.e., triple patterning lithography (TPL), is one
of MPL that has been proposed for quite a few years. In order to obtain high
resolution, many methods have been proposed for TPL layout decomposition
(TPLLD). For general layout, Ref. [105] described the TPLLD problem and

proved that it is NP-hard. To solve the problem, they introduced a semi-
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Figure 3.1: Hybrid e-beam and triple patterning lithography layout decompo-
sition. (a) A mask assignment for triple patterning lithography layout decom-
position with a conflict. (b) An example of layout with stitch insertion for
eliminating the conflict. (¢) A mask assignment for TPL layout decomposition
with a conflict. (d) A mask assignment for HETLD.

definite programming relaxation based decomposition method. In [36, 53, 59],
the authors proposed different heuristic methods to obtain decomposition solu-
tions fast. Specially, for standard cells with a row structure layout, decomposers

in [22,80,103] have considered layout decomposability in physical design stages.

Compared with MPL, EBL is a flexible lithography technique, which prints
patterns by mass electron beams. The conventional electron beam is a variable-
shaped beam (VSB), which is a rectangle based e-beam, and can only print
rectangular patterns. As a result, EBL is low throughput. To raise throughput,
many methods [66,104,108] have been proposed for the character-shaped beam
(CSB). However, the character-shaped beam technique cannot substantially re-
solve the throughput issue of EBL. Hence the use of EBL should be kept as less

as possible.

Figure 3.1 shows an example of hybrid e-beam and triple patterning lithog-
raphy layout decomposition. Suppose patterns a, b, ¢ and d in Figure 3.1(a)
and Figure 3.1(c) are too close to each other. In Figure 3.1(a), patterns are

assigned to three masks, but a conflict occurs between patterns ¢ and d. To
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eliminate the conflict, two stitches are inserted in patterns a and d to split them
into two sub-patterns respectively, as shown in Figure 3.1(b). However, for some
dense layouts, stitch insertion may not eliminate conflicts. As shown in Figure
3.1(c), there is a conflict between patterns ¢ and d, and the conflict cannot be
eliminated by inserting stitches. A manufacture plan is shown as Figure 3.1(d),

in which pattern d is printed by e-beam.

Over the years, some works have been done for hybrid lithography layout
decomposition. For 1D layout structure, Du et al. [35] constructed a mathe-
matical formulation and proposed an iterative ILP algorithm to assign cuts for
hybrid lithography with e-beam and 193nm immersion (193i) single exposure.
For 2D layout, Ding et al. [31] investigated the layout decomposition for hybrid
self-aligned double patterning lithography (SADP) and EBL by solving an ele-
gant ILP formulation; Gao et al. [42] considered simultaneously the e-beam cut
cost and the trim cut cost, and introduced a matching method for hybrid SADP
and EBL layout decomposition.

Hybrid EBL and TPL was firstly investigated by Tian et al. [82]. Their
method is only for layouts with standard cells on rows. Recently, Yang et al. [96]
considered the hybrid EBL and TPL of general layout decomposition problem
(HETLD), and proposed a random-initialized improvement local search method
basing on their hybrid EBL and double patterning lithography decomposer.
Before decomposition, their method divides every pattern into several rectangles
using candidate stitches. This operation leads to the following two issues: i) it
would increase the size of the decomposition problem; ii) since candidate stitches
are inserted at the corners of the patterns, the locations of the stitches are illegal

due to causing side-effect [36,53,59,105] and increasing the manufacturing cost.

The HETLD problem looks like the TPLLD problem, however, there are
many differences between the HETLD problem and the TPLLD problem. First,
the TPLLD problem uses stitch insertion for eliminating conflicts, while the

HETLD problem uses e-beam and stitch insertion. Second, the primary objec-
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tive of the HETLD problem is minimizing the sum of VSB numbers, while the
TPLLD problem is minimizing the total number of conflict edges. Furthermore,
when decomposing a layout for the HETLD problem, if a pattern is assigned to
e-beam, then stitch cannot be used for reducing the VSB number of the pattern.
While for the TPLLD problem, if a pattern conflicts with some other pattern-
s, then stitch still can be used to reduce the number of conflicts. Finally, for
the HETLD problem, if a pattern is assigned to e-beam, then the pattern has
no conflicts with other patterns. Hence, the discrete relaxation based decom-
position method for the TPLLD problem [59] cannot be used directly for the
HETLD problem.

In this chapter, we consider the hybrid e-beam and TPL of general layout
decomposition problem. We propose a two-stage decomposition flow for the
problem. At the first stage, we consider an e-beam and stitch aware TPL mask
assignment (ESTMA) problem, and then the problem is formulated as a binary
linear program and solved by the cutting plane approach. At the second stage,
the solution is legalized to a feasible solution of the HETLD problem by stitch
insertion and e-beam shot. In addition, some graph reduction techniques pro-
posed by previous TPL layout decomposers [36,53,59,105] are used to reduce
the problem size. Moreover, a new graph reduction which deletes some minor
conflict edges is proposed to further speed up the decomposition flow. Further-
more, in order to obtain a better solution with less VSB number, we propose an
extended minimum weight dominating set for R, mask assignment (MDSR;MA)
problem, which is also formulated as an ILP. In the first stage, if we solve the
MDSRsMA problem instead of the ESTMA problem, then more patterns can
be assigned to TPL masks by inserting stitches. Experimental results show the
effectiveness of the ESTMA and the MDSR;MA based decomposition methods.
In addition, it must be noted that the two issues in [96] are avoided in this

chapter.
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3.2 Preliminaries

In this section, first we describe the hybrid EBL and TPL of general layout
decomposition (HETLD) problem, and then we introduce some concepts and

analyze properties of the HETLD problem.

3.2.1 Hybrid E-Beam and TPL Layout Decomposition Problem

Given a layout L, the minimum coloring spacing min.s rule is that, if the
distance between two patterns is less than min.,, then there exists a conflict
between the two patterns. The hybrid e-beam and TPL layout decomposition
(HETLD) problem is that, the patterns in L are assigned to three TPL masks
with stitch insertions to eliminate most of the conflicts, and to totally eliminate

conflicts, e-beam shots are used to print some patterns.

The HETLD problem can be seen as that, all patterns in L are assigned to
four different colors, i.e., three colors for TPL and one color for EBL. For the
three colors for TPL, stitch insertion can be used to split patterns into several
sub-patterns, and the distance between any two patterns or sub-patterns in the

same TPL color should be greater than min,,.

Since stitch will lead to potential functional errors of a chip, and increase
the manufacture cost [82], the number of stitches should be minimized. In
addition, EBL system mainly applies the variable shaped beam (VSB) technique
to print patterns, which is low throughput due to one-by-one print process [67,
104]. Hence, to maximize the throughput, the number of VSB shots should be
minimized. It must be noted that VSB is a rectangle-shaped electron beam,
hence a pattern should be split into a set of rectangles for being printed by VSB
shots [31,35,41,48]. That is, the number of rectangles of patterns printed by
e-beam is equal to the number of VSBs [82]. Thus, in the hybrid TPL and EBL
layout decomposition, the number of VSBs and the number of stitches should

be minimized for low cost and high throughput of manufacture. Formally, the
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Figure 3.2: An illegal mask assignment for HETLD.

HETLD problem is described as follows.

Hybrid e-beam and triple patterning lithography layout decom-

position problem F:

Given: Layout L, the minimum coloring spacing min.,, the minimum pat-

tern size min,s, and the minimum overlap margin min,,.

Find: A color assignment of patterns in layout L to three colors for TPL
with stitch insertions and one color for EBL, subject to: i) any two patterns or
sub-patterns within min.s should not be assigned to the same TPL color; ii) a
pattern in L should be printed only by TPL or EBL; and iii) the location of

stitch insertion should be legal.

Objective: Mainly minimize the number of VSBs, i.e., |[V.SB|, and sec-

ondly minimize the number of stitches, i.e., |S|.

In the problem, the second constraint means that, sub-patterns of a pattern
should be produced by the same manufacture technique, i.e., either by TPL or
by EBL. This is due to that, producing a pattern using two different manufacture
techniques will induce greater manufacture cost [96]. Here, we show an illegal
mask assignment as Figure 3.2. In the figure, sub-pattern d; is printed by e-beam

shot, but dy is printed by TPL exposure.

For the location of an inserted stitch, it should satisfy that [59]: i) a gen-
erated sub-pattern must be larger than the minimum pattern size min,,; ii) the
location of an inserted stitch should not be near any corner of a pattern; and iii)

the overlap length should be greater than the minimum overlap margin min,,,.
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Here the overlap length means that, an inserted stitch can be moved within some
range without causing any new conflict, and the length of the range is called the

overlap length [53].

To show complexity of the HETLD problem, first we consider the minimum
weight vertex removal 3-coloring (MWVR3C) problem. The decision problem
of the MWVR3C problem is that, given a vertex-weighted undirected graph
G(V,E) and a constant K, we ask if there exists a subset V' of V| such that
the sum of weights of vertices in V” is less than or equal to K, and the in-
duced subgraph G[V — V'] of G is 3-colorable. Since deciding whether a graph
is 3-colorable is NP-complete [43], the MWVR3C problem is NP-hard. Further-
more, the MWVR3C problem can be reduced easily to the HETLD problem.
The detail of reduction is the same as that in [105], in which the planar graph
3-coloring problem is reduced to the triple patterning layout decomposition prob-
lem. Hence, the HETLD problem is NP-hard, which means that it cannot be

solved in polynomial time unless P=NP.

3.2.2 Conflict Pattern and Native Conflict

Given a layout L, according to the minimum coloring spacing min., rule, we
transform the geometric layout structure to a conflict graph CG(V, E), where
V' is the set of patterns, and E is the set of conflict edges between any two
patterns. In the conflict graph C'G, two patterns where a conflict edge exists
should be assigned to different masks. However, there might be some patterns
which cannot be assigned to different masks to eliminate conflicts. They should
be inserted stitches or assigned to e-beam. Furthermore, there might be conflicts
at some patterns which cannot be totally eliminated by inserting stitches. Some

of these patterns should be assigned to e-beam.

We present a graph structure where conflicts between patterns cannot be
resolved by inserting stitches. Before that, some definitions from [59] are intro-

duced as follows.
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Definition 3.2.1 (conflict region, C'R). The conflict region of a pattern is de-
fined as a 2D region around the pattern, which is within the minimum coloring

spacing min.s of the pattern.

Figure 3.3(a) shows an example of conflict region, where the round rectangle
region of pattern c is the conflict region of ¢. And the red dashed box in Figure

3.3(a) is the intersection of pattern d and C'R of pattern c.

As we know, K is the smallest 3-uncolorable structure, and a 3-uncolorable
graph would generate conflicts for TPL layout decomposition. Actually, for TPL,
most of conflicts would be generated from K. The K, structure is introduced

as follows.

Definition 3.2.2 (conflict pattern, C'P). Pattern v is called a conflict pattern if
it satisfies the two conditions: i) on pattern v there is an intersection of conflict
regions of three other different patterns; ii) the sub-graph induced by pattern
v and the three patterns is a K4 graph. The three patterns are called conflict
adjacent patterns C AP of pattern v.

Definition 3.2.3 (K, conflict structure, K,C'S). A graph structure is a K,
conflict structure if: i) it is a K4 structure; ii) all of the four patterns are conflict

patterns C'P; and iii) the four patterns are C AP each other.

As Figure 3.3(b) shows, pattern d is a C'P, since there is a red box on
pattern d, which is the intersection of conflict regions of patterns a, b and c.
Actually, patterns a, b, and ¢ also are C'P, and the four patterns compose a
K. Furthermore, the four patterns are C AP each other. Thus, the structure
composed by patterns a, b, ¢ and d is a K4C'S. For comparison, we show a
non-conflict pattern NC'P as the pattern a in Figure 3.3(f), in which pattern a
belongs to a K4 graph, but on pattern a there does not exist an intersection of

conflict regions of patterns b, ¢ and d.
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Figure 3.3: Conflict region and conflict patterns. (a) Conflict region. (b) Conflict
pattern. (c¢) An example of non-conflict pattern. (d) K, conflict structure. (e)(f)
Native conflict structure.

Definition 3.2.4 (native conflict structure, NC'S). A native conflict structure

NC'S consists of one or more connected K, conflict structures. A K,C'S is the

smallest NC'S.

By Definition 3.2.4, the structures in Figure 3.3(b) and Figure 3.3(d) are
native conflict structures NC'S. Figure 3.3(b) consists of one K,CS {a, b, ¢, d},
and Figure 3.3(d) consists of two K,;CSs {a, b, ¢, d} and {b, e, d, f}, since {a,
b, ¢, d} and {b, e, d, f} are connected at vertices b and d.

Next, we show a relationship between NC'S and e-beam as follows.

Theorem 3.2.5. At least a pattern in K4C'S should be printed by e-beam.

Proof. Since K,C'S is a K, structure, it is not 3-colorable, and there is at least a
conflict between two of the four patterns after coloring. Moreover, from [59], we
know that the conflicts between the four patterns cannot be totally eliminated
by stitch insertions. Hence at least a pattern in K,C'S cannot be printed by
TPL, which must be printed by e-beam. O

According to the definition of NC'S and Theorem 3.2.5, we have a corollary

as follows.
Corollary 3.2.6. At least a pattern in NC'S should be printed by e-beam.
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Given a layout, we cannot distinguish which conflict can be eliminated by
stitch insertion, but Theorem 3.2.5 and its corollary provide sufficient conditions
for finding patterns which should be printed by e-beam. The two sufficient con-
ditions are critical for our e-beam and stitch aware TPL mask assignment in the
next section. Hence, before coloring, it is significant to check the conflict pat-
terns and native conflict structures, by which we can find potential unresolvable

conflicts in a layout.

Checking the native conflict structures in a layout can be done by the
BFS algorithm, which traverses all vertices, and finds all conflict patterns. For
a conflict graph CG(V, E), suppose D = max{d,,v € V} is the maximum
degree of vertices, then the computing time of determining whether there exists
a structure containing a pattern v is Ky is in time O(D?). It is easy to know

that the runtime complexity of checking all NC'S in CG(V, E) is O(D? x |V]).

3.3 Hybrid E-Beam and TPL Mask Assignment
Methods

In this section, we introduce the first layout decomposition stage. For the
hybrid e-beam and TPL layout decomposition (HETLD) problem, the minimum
number of VSBs is the primary objective, and the minimum number of stitches
is the secondary objective. For a large scale case of the HETLD problem, it
is not good that every pattern in a layout is split into several sub-patterns
by candidate stitches before solving the problem, since this would increase the
size of the problem. Hence, we introduce two mask assignment methods: (1)
the e-beam and stitch aware TPL mask assignment (ESTMA) method; (2) the
extended minimum weight dominating set for R, mask assignment (MDSR,;MA)
method. The two methods consider implicitly the e-beam and stitch insertion
in the first decomposition stage, and the concrete e-beam and stitch insertion

will be considered in the second decomposition stage. Some involved notations
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are introduced as follows:

V', the set of patterns in a conflict graph;

e F. the set of conflict edges in a conflict graph;

W, the set of weights of patterns in a conflict graph;

V'S B;, the number of VSBs (or the number of rectangles) of pattern i;

(4, Cy, C3, the colors (masks) of TPL;

Ry, the set of uncolored patterns;

B, the weighting parameter between VSB and stitch numbers, which is set

as = 0.01 as in [96].

3.3.1 E-Beam and Stitch Aware TPL Mask Assignment (ESTMA)

For the HETLD problem, e-beam and stitch insertion can be seen as two
kinds of conflict eliminating techniques, where the cost of e-beam is higher than
that of stitch insertion. Hence, if we can distinguish which pattern will use stitch
insertion to eliminate conflicts, and which pattern must use e-beam to eliminate
conflicts, then the HETLD problem can be well addressed. However, we do not
know about that before coloring. In this subsection, we introduce the e-beam
and stitch aware TPL mask assignment (ESTMA) problem by assigning weights
to all patterns. The objective of the ESTMA problem is minimizing the sum of
weights of uncolored patterns, which implies minimizing the numbers of VSBs

and stitches.

According to the analysis in Section 3.2.2 for conflict pattern C'P and K,
conflict structure K4CS, we know that for a C'P, stitch insertion is almost
useless for eliminating all conflicts, unless some of its conflict adjacent patterns

C AP are assigned to e-beam or stitches are inserted into its C AP. However, if
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a pattern is not a C'P, stitch insertion is more likely to eliminate all conflicts.

Thus, the weights of patterns are set as

w;

) VSB, if 7 is a conflict pattern;
N {5V5’Bi, if 7 is not a conflict pattern.

We divide patterns into four color classes without considering e-beam and
stitch insertion directly. The objective is minimizing the sum of weights of
patterns in Ry, ie., > . g, Wi- Thus, the e-beam and stitch aware TPL mask

assignment (ESTMA) problem is formulated as

min Z w; (3.1)

1ERY
s.t. if i, j € Cy, then i & A(j), k=1,2,3; (3.1a)
i€ CiUCyUCsU Ry. (3.1b)

In the above formulation, A(7) is the set of adjacent patterns of j in the conflict
graph CG; i € C), means pattern 7 is assigned to color k, k =1,2,3; and ¢ € Ry
means pattern i is uncolored. Constraint (3.1a) is used to force that any two

touch patterns should be assigned different colors.

In order to solve Problem (3.1) and obtain a solution, we formulate it as a
binary linear program (BLP). Let (x;1, x;2) be a two dimensional binary variable,
which is used to represent the color of vertex i. When (z;1,2:) = (0,1), it
means i € Cy; similarly, when (z;,x;2) = (1,0), it means ¢ € Cy; and when
(xi1,xi2) = (1,1), it means ¢ € C5. However, when (z;1,z;2) = (0,0), it means

i € Ry. Then Problem (3.1) is equivalent to the following binary problem (3.2).
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min Z w;Y; (3.2)

s.t. Tig — Ty + Tjo — i < 1, Ve, € E; (3.2a)
Tin — Tig + Tj1 — Tjo < 1, Ve;; € E; (3.2b)
Ti1 + Tio + T + x50 < 3, Ve;; € E; (3.2¢)
11—y — x50 <y, VieV; (3.2d)
(zi1, x2) € {0,1}, yi, € {0, 1}, VieV. (3.2¢)

In the above equation, Constraints (3.2a)-(3.2¢) is equivalent to constraint
(3.1a). That is, any two patterns within the same color class Cj are not conflict-
ing, k = 1,2,3. Constraint (3.2d) is used to force that, if z;; = 0 and x;, = 0

then y; = 1; otherwise y; = 0, since the objective is minimization and w; > 0.

3.3.2 Extended Minimum Weight Dominating Set for R, Mask As-
signment (MDSR,MA)

According to the weighting rule for the ESTMA Problem (3.1), it can be
seen that for a solution of Problem (3.1), if a conflict pattern i is assigned to Ry,
then V. SB; will be added to the objective value. Actually, the CPs in R4 might
be assigned to TPL masks using stitch insertion, and then the total number of

VSBs will decrease. We take an example to show this as follows.

For the layout given in Figure 3.4(a), all patterns are C'P, and an optimal
solution of the ESTMA problem (3.1) is shown in Figure 3.4b, where conflict
patterns ¢ and g are assigned to R4. In the second decomposition stage, since
patterns ¢ and ¢ cannot be inserted stitches to eliminate conflicts, they are
assigned to e-beam as in Figure 3.4(c). Then the total decomposition cost of
the HETLD problem is the number of VSBs, i.e., [VSB| = 2. However, there
exists a feasible solution of Problem (3.1) as shown in Figure 3.4(d), where

conflict patterns a and g are assigned to R,. For this solution, if pattern g is
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b . "R

Figure 3.4: A comparison of the ESTMA problem and the MDSR;MA problem.
(a) A layout where all patterns are CP. (b) A feasible solution of the ESTMA
problem. (c¢) The decomposition result of (b)(g). (d) A feasible solution of the
ESTMA problem. (e) The decomposition result of (d)(h). (f) The set of conflict
adjacent edges E.,. (g)(h) Two feasible solutions of the MDSR4;MA problem.

assigned to e-beam, and pattern a is inserted one stitch for coloring in the second

stage, then |VSB| = 1, |[S| = 1, and the total cost of the HETLD problem is
1 + 3, which is smaller than the solution shown in Figure 3.4(b).

Note that, for a feasible solution of problem (3.1), if a conflict pattern i is
in Ry, then it cannot be inserted stitches for TPL color assignment, unless some
of its conflict adjacent patterns C'APs are assigned to e-beam. The reason is
that, if at least one of its C'APs are assigned to e-beam, then stitches might be
inserted into ¢ for assigning the sub-patterns of 7 to TPL colors. Thus, comparing
with assigning some irrelevant C'Ps to Ry, like ¢ and ¢ in Figure 3.4(b), it is
better to assign some of the C'Ps and their CAPs to R4 simultaneously at the
first decomposition stage, like a and ¢ in Figure 3.4(d), if needed. And the
second decomposition stage will deal with the patterns in R4 by stitch insertion

or e-beam shot.
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For two patterns ¢ and j, if 7 is a CAP of j or j is a CAP of i, then we
call the edge between ¢ and j as a conflict adjacent edge and denote it by cae;;.
For example, every edge in Figure 3.4(f) is a conflict adjacent edge. Let E., be
the set of conflict adjacent edges. We introduce a graph Gg,(Ry, Eg,), which
is induced by R4 from graph G(V, E.,), where Eg, C E.,. Since if a pattern
1 € R, is assigned to e-beam, then some other patterns in R, connected to i by
cae;; may be assigned to TPL masks using stitch insertion. Hence we hope to
assign the conflict patterns connected by conflict adjacent edges to Ry at the

first decomposition stage, if needed.

Following this motivation, we propose the extended minimum weight dom-
inating set for R, mask assignment (MDSR;MA) problem. A dominating set
Sp of a graph Gg, (R4, ERr,) is a subset of R, such that every vertex not in Sp
is adjacent to at least one member of Sp. For the MDSR4MA problem, every
pattern in a layout would be assigned to one of the sets C, Cy, C3, Sp and
R4 — Sp, such that the conflict spacing rule is satisfied. The main objective is
minimizing the total VSB number of patterns in Sp, and the secondary objective
is minimizing the size of the set Ry —Sp. The MDSR,;MA problem can be seen
as a hybrid of the minimum weight dominating set problem and the 3-coloring

problem, which can be formulated as

min > " wi + B(|Ral — |Spl) (3.3)
1€Sp

s.t. if i, j € Cy, theni & A(j), k=1,2,3; (3.3a)
1€ 01U02U03UR4; (33b)
Sp is a dominating set of Gg,(Ry, ER,). (3.3¢)

Obviously, any vertex in Ry is either in Sp, or adjacent to at least a vertex in
Sp. The objective of the problem is minimizing the sum of weights of vertices

in the dominating set Sp and B(|Ry| — |Sp|), where the weight w; of vertex i is
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the same as that in problem (3.1).

Consider the MDSR;MA problem on the graph in Figure 3.4(g), where the
coloring schemes of vertices in Figures 3.4(g) and 3.4(h) are two feasible solutions
respectively. For Figure 3.4(g), Gg, (R4, ER,) is the graph with R, = {¢, ¢} and
Er, = 0. Sp = {¢, g} is a dominating set of Gg,, and the objective value
of the MDSR,;MA problem is ;g w; + B(|Ra| — [Sp|) = we + wy = 2. For
Figure 3.4(h), Gg,(R4, ER,) is the graph with R, = {a, g} and Eg, = {(a, g9)}.
Sp = {g} is a dominating set of Gg,, and the objective value the MDSR,;MA
problem is D, w; + B(|Ra| — [Sp|) = wy + B(|R4| — [Sp|) =1 + B. In fact,
the solution as Figure 3.4(h) is an optimal solution of the MDSR;MA problem.

Problem (3.3) is not in numerical form. In order to solve the problem, we

formulate it as a binary linear program (BLP):

min Z w;z; + B z:(yZ — %) (3.4)

eV eV
s.t. Tio — Ti1 + Tjo — Tj1 S ]_, ‘v’eij € E, (34&)
X1 — Lo + Tj1 — Tj2 < 1, Veij c E, (34b)
Ti1 + T + L1 + Tj2 S 3, ‘v’eij € E, (340)
Ti1 + Tio — 2 S —QZZ', Vi € V, (346)
1— Ti1 — Tj2 — .le — I’jg S Z Zms \V/Z < Vv,] S Aca(i) U {l},
meEAcq(1)U{s}
(3.4f)
(@i, wi2) € {0,1} 5,2 € {0, 1}, VieV. (3.4g)

In the above formulation, (x;, ;) is used to denote a color as in problem
(3.2). Ag(i) is the set of vertices connected to ¢ by conflict adjacent edges.
Constraints (3.4a)-(3.4c) is an equivalent formulation of Constraint (3.3a). That

is, any two patterns within the same color class C} are not conflicting, k = 1, 2, 3.
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Constraint (3.4d) is used to force that, if (z;,x) = (0,0), i.e., i« € Ry, then
y; = 1; otherwise y; = 0, since the objective is minimization and w; > 0.
Constraint (3.4e) is used to force that, only if pattern i € Ry, then z; may be
equal to 1; otherwise, z; = 0. Constraint (3.4f) is used to find a dominating set
Sp of Gr,(Ry4, ER,). If z; =1, then i € Sp. If all adjacent patterns of pattern
i € Ry are not in Ry, i.e., all j € A, (i) are not in Ry, then z; = 1. If there exists
J € Ac(i) N Ry such that z; = 1, then z; = 0 since the objective is minimization.
If for all j € Au(7) N Ry, z; = 0, then z; = 1, which means ¢ is a vertex in the

dominating set.

We use the cutting plane approach in the software package GUROBI [3]
to solve Problems (3.2) and (3.4). Problems (3.2) and (3.4) are hard to solve
in the large scale case, especially for problem (3.4), since it has more variables
and constraints. However, the graph reduction techniques in Section 3.5 can cut
down the size of the problem such that it is easy to solve using the cutting plane

approach. Here, we have the following result for Problems (3.2) and (3.4).

Theorem 3.3.1. Suppose M is the number of native conflict structures NC'S
in a layout L. We have
i) for the HETLD problem, its VSB number is at least M;

R

ii) suppose ™ is an optimal solution of problem (3.2) or (3.4), then it holds

that V.SB(z™) > M.

Proof. 1) For the initial layout L, by Theorem 3.2.5, at least M patterns should
be printed by e-beam, since there are M native conflict structures NC'S in the
layout L. Moreover, every one of these patterns should be printed by at least a
VSB shot. Hence at least M VSB shots should be used to eliminate the conflicts.
So the total VSB number for the HETLD problem is not less than M.

ii) For problem (3.2) or (3.4), all vertices of a K,CS in Ef satisfy Con-
straints (3.2a)-(3.2¢) or (3.4a)-(3.4c). Since an NC'S is not 3-colorable, an opti-

mal solution 2™ of problem (3.2) or (3.4) includes at least M components with
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v € Ry, and VSB; > 1 (Vi € M) holds. Thus VSB(zf*) > M. O

3.4 Legalization by Stitch Insertion, E-Beam Shot and
Backtrack Coloring

In the second decomposition stage, a solution z? = (zf, zft .. zf) of
problem (3.2) and (3.4) may be infeasible for the HETLD problem. This is
caused by that: First, there may exist some conflicts between patterns due to
the edge deletion of the relaxed conflict graph RG(V, E®, W) (introduced in
Subsection 3.5.1.2). Second, the patterns in R4 are uncolored which should be

assigned to TPL masks by stitch insertion or printed by e-beam shot.

R

Hence an infeasible solution z* must be legalized to a feasible solution

ot = (2l 28 ... 2f) of the HETLD problem. First, we deal with the conflicts
between patterns by stitch insertion. If a conflict cannot be eliminated by stitch
insertion, then for the two patterns causing the conflict edge, we assign one of
them with less VSB number to e-beam shot. After all conflicts having been
eliminated, we assign the patterns in R4 to TPL masks by stitch insertion or

assign to e-beam. In addition, in order to achieve a better solution, a backtrack

coloring method is used, which is a local swap based method.
3.4.1 Conflict Elimination

In an optimal solution z# of problem (3.2) or (3.4), most of the components
satisfy Constraint (3.1a) or (3.3a), but there still exist some components which
violate the constraint. Suppose that components p and g of xf satisfy xf =
qu € Cy (k € {1,2,3}), and (p,q) € E. That means (p,q) is a conflict edge
and p and ¢ are assigned to the same TPL color, and there is a conflict between
p and ¢q. We introduce stitch insertion or e-beam shot to patterns p or ¢ to

eliminate the conflict. There are three cases:

1. Stitches are inserted into one of the patterns p or ¢, say p. Pattern p is
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split into several sub-patterns pi,ps, -+, pm. These sub-patterns p;, ¢ =
1,2,---,m, can be divided into two classes according to the distance be-
tween p; and ¢, i = 1,2,--- ,m: i) one class of patterns is that the distance
is less than or equal to min.s, then the TPL colors of these sub-patterns
should be different from g¢; ii) another one is that the distance is greater
than min,., then the TPL colors of these sub-patterns may be the same as

that of pattern q.

2. Both patterns p and ¢ are split into several sub-patterns using stitches. Too

close sub-patterns (within min.,) should be assigned different TPL colors.

3. Stitch insertion cannot eliminate the conflict between the two patterns. That
means one of p and ¢ should be printed by e-beam. We choose the pattern

with less VSB number for e-beam shot.

Note that, if one of patterns p and ¢, say p, is a C'P, and p and three
patterns from its CAP compose a K,, then inserting stitches into p cannot
eliminate conflicts. Motivated by this fact, for patterns p and ¢ that satisfy
(p,q) € E and p and ¢ are assigned to the same TPL color in the infeasible
solution, we propose a conflict elimination algorithm as Algorithm 3.1 to insert

stitches to patterns p or ¢ or assign e-beam to p or q.

In Algorithm 3.1, the function genC'SI() (line 2) is used to generate poten-
tial candidate stitch insertions for every pair of patterns p and ¢ which satisfy
that (p,q) € E and p, ¢ are assigned to the same TPL color. In [59], the au-
thors proposed an algorithm to generate all possible candidate stitch insertions
CS1I for a pattern i, we call it genCS1(7). The algorithm first finds all conflict
regions on pattern ¢, and then finds the horizontal or vertical line segments on
pattern ¢, which are tangent to a conflict region. A line segment at pattern side
is called a Checking Stitch Edge (C'SE). The combination of one or more C'SEs
on pattern i is called a Candidate Stitch Insertion (C'ST). A Candidate Stitch

Insertion on a pattern will produce sub-patterns with the minimum number of
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Algorithm 3.1 Relaxation solution legalization 1
R.

Input: Relaxation solution z
Output: Solution z® without conflict;
1: for every (p,q) € E and z)} =z} € C, do
CSIs = genCSI(p,q) for patterns p and g;
NSy +o0;
for every C'ST of p and ¢ do
if conflict between p and ¢ is eliminated and there is no new conflict
generated by inserting C'ST then
if NScsr < NSy then
NSy <+ NScsr, and store current C'ST;
end if
end if
10:  end for
11:  if NSy < +oo then
12: insert C'ST with stitch number NScg; = NS to patterns p or ¢, and
the generated sub-patterns are assigned TPL colors Cy, k =1, 2, 3;
13:  else
14: if VSB, < VSB, then

15: pattern p is assigned to e-beam;
16: else

17: q is assigned to e-beam,;

18: end if

19: end if

20: end for

conflicts.

In this chapter, we use the corresponding algorithm in [59] as the function
genCSI() to generate all candidate stitch insertions of patterns p and ¢, i.e.,
CSIs = genCSI(p,q) (line 2). A candidate stitch insertion C'ST is a stitch
insertion plan which may include some stitches on patterns p and q. NScsr
(line 6) is the stitch number of a certain C'SI. NSy is an intermediate variable.
Of course, stitches generated by genCSI() should satisfy the stitch location
condition: a candidate stitch insertion is not near the periphery or the corner of
the pattern, and should be in the overlap margin of the pattern which is greater

than min,,,.
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In Algorithm 3.1, first we check stitch insertions for a pair of patterns p and
¢ (lines 2-10). If there are some insertion plans which can totally eliminate the
conflict between p and ¢, then we choose the insertion plan with the minimum
stitch number to eliminate the conflict (lines 11-12); otherwise, we consider e-
beam shot to print one of p and ¢ which has less VSB number (lines 13-19), and
let another one printed by TPL.

3.4.2 Assignment of Patterns in R,

E_in order to obtain a feasible

After removing all conflicts of the solution x
solution 7 of the HETLD problem, we assign the patterns in R, to TPL colors
or e-beam shot. The patterns in R, are dealt with one by one. We check whether
every pattern ¢ € R4 can be divided into several sub-patterns by stitch insertion
such that these sub-patterns can be assigned to TPL masks without generating
conflicts. If not, 7 is assigned to e-beam. The details are as Algorithm 3.2 shows,
which is similar to Algorithm 3.1, where we only consider a pattern ¢ instead of
a pair of patterns p and ¢q. The explanations are the same as those of Algorithm
3.1, and are skipped here. It must be remarked that, Algorithm 3.2 shows the
assignment of patterns in R, for the ESTMA problem (3.2). For the MDSR,;MA
problem (3.4), the statement “every pattern i € Ry” (line 1) in Algorithm 3.2

would be replaced by “every pattern i € Ry — Sp, then every pattern ¢+ € Sp”.

3.4.3 Backtrack Coloring

In the above legalization algorithms, the quality of an obtained solution de-
pends on the legalization order. Moreover, due to stitch insertion, some removed
patterns at the graph reduction stage introduced in the next section may have
to be assigned to e-beam. However, the VSB number caused from the above two
cases could be reduced by a backtrack coloring method, which tries to further
reduce the VSB number of the solution 2! obtained from Sections 3.4.1 and

3.4.2. The method is detailed as Algorithm 3.3.
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Algorithm 3.2 Relaxation solution legalization 2

Input: Legalized solution = from Algorithm 3.1;

Output: Feasible solution x

H.
)

1: for every pattern ¢ € R, do

2. CSIs = genCSI(i) for pattern i

3 NSy <+ +o0;

4:  for every C'SI of i do

5: if there is no conflict generated from ¢ by inserting C'ST then

6: if NScgr < NSy then

7 NSy < NScsr, and store current C'ST;

8: end if

9: end if

10: end for

11:  if NSy < +oo then

12: insert C'ST with stitch number NScg; = NSy to pattern i, and the
generated sub-patterns are assigned to TPL colors Cy, k =1, 2, 3;

13: else

14: pattern ¢ is assigned to e-beam,;

15:  end if

16: end for

Algorithm 3.3 Backtrack coloring

Input: Solution 2/ obtained from Algorithm 3.2;
Output: Another feasible solution z'';
1: for every pattern i assigned to EB in 2/ do

2 calculate totalV SB(Cy, 1) of all patterns in C}, connected to ¢, k = 1,2, 3;

3 ko ¢ argmin,_, 5 3{totalV.SB(Cy,1)};

4:  if totalVSB(Ch,,1) < VSB; then

ot Cko = Cko U {’L}, EB=FEB— {’L},

6 for every j connected to i and j € Cj, do

7 Cko = C’Co - {j}7

8 Use lines 2-15 of Algorithm 3.2 for pattern j to perform stitch inser-
tions or e-beam assignment;

9: end for

10:  end if

11: end for

Algorithm 3.3 aims at finding a better solution with less total VSB number

by searching the adjacent patterns of pattern i € EB of 1. In this algorithm,

totalV SB(Cy,1) is the total VSB (rectangle) number of patterns in color class

C) connected to i, V.SB; is the VSB (rectangle) number of pattern i. Line 8
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is used to perform stitch insertions or e-beam assignment for pattern j € Cy,

which is connected to <.

3.5 Graph Reduction and Decomposition Flow

In this section, firstly, we introduce some vertex removal techniques, and
propose a new graph reduction technique which removes some edges. And then,

we show our decomposition flow.
3.5.1 Graph Reduction

Generally, it is hard to solve directly the large scale HETLD problem of
general layout, due to the complexity of the problem. For tackling the large
scale problem, some techniques should be utilized first to preprocess the conflict

graph for reducing the size of the problem.
3.5.1.1 Vertex Removal

We introduce some tricks to delete some easily colored vertices from the
conflict graph, which have been popularly used to reduce the size of the TPL
layout decomposition problem [36, 53,59, 105]:

e Vertex with degree less than three removal [36,53,59,105];
e Contained vertex removal [59];
e Connected component calculation [36,53,59,105].

These techniques are highly effective for reducing the problem size of the
HETLD problem. Since vertices with degree less three are easily colored for the
3-coloring problem, the operation Vertexr with degree less than three removal will
not lose the solution quality of the HETLD problem, and is used repeatedly in
our decomposition flow. The operation Contained vertex removal was introduced
in [59], which aims at deleting contained vertices. The definition of Contained

vertex 1is as follows.
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Definition 3.5.1 (contained vertex). Given a graph G(V, E), for a pair of ver-
tices i, 7 € V, suppose that (i, j) ¢ E and A(i) C A(j), where A(:) and A(j) are
the set of adjacent vertices of vertices ¢ and j, respectively. Then we call that
vertex ¢ is contained in vertex j, vertex i is called a contained vertex, and j is

called a containing vertex.

A contained vertex can be prior assigned the color of its containing vertex.
The vertices with degree less than three and the contained vertices are deleted
from the conflict graph before the TPL mask assignment stage. And they are
colored as soon as the TPL mask assignment stage finishes. The order of coloring

these vertices is in the reverse order of deleting them.

Another graph reduction technique is connected component calculation. S-
ince the HETLD problem in different connected components is independent, we
need to calculate the connected components for solving the problem easier. Ac-
tually, the conflict graph can be divided into a number of connected components
after the operations Vertex with degree less than three removal and Contained
vertex removal. Furthermore, our algorithm deals with the HETLD problem on

the connected components one by one.
3.5.1.2 Edge Deletion

For the HETLD problem, e-beam and stitch are used to eliminate conflicts.
To minimize VSB and stitch numbers, it is necessary to figure out the relation-
ship among the conflict, stitch and VSB. That is, we must decide which conflict
edge can be eliminated by inserting stitches in a pattern, and which conflict edge
must be eliminated by VSB. According to our analysis in Section 3.2.2 and our

empirical experiments, we have three meaningful observations:

1. Conflicts are mainly generated due to K, structure, which is the smallest

3-uncolorable graph;

2. For the native conflict structure NC'S (including K,CS), the conflicts in it
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cannot be totally eliminated by stitch insertions;

3. Suppose that there are conflicts at pattern i. If i is a conflict pattern (C'P),
then the conflicts at pattern ¢ cannot be totally eliminated by inserting
stitches into this pattern; if ¢ is a non-conflict pattern (NCP), then the
conflicts at pattern ¢ might be eliminated by inserting stitches into this

pattern.

Inspired by the above observations, we construct a relaxed conflict graph
RG(V, ER,W) by deleting some minor conflict edges of the weighted conflict
graph CG(V, E,W). In the weighted conflict graph, if a K structure is not a
K,CS, and a conflict edge (7, j) in the K structure satisfies one of the following

conditions, then (7, j) is considered minor:
i) at least one of i and j is not C'P;

ii) both ¢ and j are C'P, but at least one of them has that its CAPs are

not all in the K, structure.

For a K, structure, there may be more than one conflict edges satisfying
the above conditions, but we only delete the minor conflict edge (7, j) with the
sum of weights of vertices w; + w; less than those of the other minor conflict

edges.

According to our statistics, many conflict edges could be deleted at this
step. The relaxed conflict graph is constructed at the conflict pattern C'P and Ky
conflict structure identifying step (Section 3.2.2). After that, a relaxed conflict
graph RG(V, Ef W) is generated, where E® C E. Then our ESTMA and
MDSR,;MA problems are solved on RG(V, E®, W), respectively. The relaxed
conflict graph is sparser than the original conflict graph by deleting some conflict
edges. Thus, solving the ESTMA and MDSR;MA problems on RG(V, ER, W)
are easier than on CG(V, E, ).
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3.5.2 Flow for Hybrid EBL and TPL Layout Decomposition

For the HETLD problem of general layout, our decomposition flow is summed
up as Figure 3.5. Given a layout L, according to the minimum coloring spac-
ing min.s rule, we transform the geometric layout structure to a conflict graph
CG(V, E), where V is the set of patterns, and F is the set of conflict edges be-
tween any two patterns. Some graph reduction techniques are used to reduce the
size of the conflict graph. After that, the surface projection based method [59]
is introduced to calculate conflict patterns and detect native conflict structures.
Then we introduce an e-beam and stitch aware TPL mask assignment problem

for the reduced graph.

Based on the native conflict structure, a relaxed conflict graph is construct-
ed by removing some conflict edges. On the relaxed conflict graph, the e-beam
and stitch aware TPL mask assignment (ESTMA) problem and the extended
minimum weight dominating set for R4 mask assignment (MDSR;MA) problem
are formulated. Furthermore, the 0-1 linear program of one of the above two
problems are formulated for obtaining a solution. At last, stitch insertion and
e-beam assignment are introduced to eliminate all conflicts, and obtain a higher
resolution for the layout decomposition problem. The details of the decomposi-

tion flow are illustrated in the above sections.

3.5.3 An Example of The Two Stage Decomposition Algorithm

In this section, for the hybrid e-beam and TPL layout decomposition (HET-
LD) problem, we give an example to illustrate the ESTMA / MDSR,;MA based

decomposition methods described in Sections 3.2, 3.3 and 3.4.

Figure 3.6(a) is a layout with patterns {a, b, ¢, d, e, f, g}. According to
the minimum coloring spacing rule, a conflict graph CG(V, E) is constructed as

in Figure 3.6(b), where
V - {a7 b7 C7 d? 6’ f7 g};
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Figure 3.5: Our HETLD decomposition flow.

E:{(a’ab)7 (aac)a (a7d)’ (670)7 (b’d)7 (b’e)7 (C7d)7
(c.e), (¢, f), (¢,9), (d,e), (d.f), (e, [), (f,9)}-

position stages.

Here, we skip the graph reduction techniques, focusing on the two decom-

3.5.3.1 Decomposition Stage

Before coloring, using the conflict identification method, we can find all K,
subgraphs: {a, b, ¢, d}, {b, ¢, d, e}, {c, d, e, f}; all conflict patterns CP: b, ¢, d,
e, f;and all K,CSs: {b, ¢, d, e}, {c, d, e, f}, which are shown in Figure 3.6(c).
Then all patterns are weighted by our weighting rule: w(a) = 0.01, w(b) = 1,

w(c) =2, w(d) =3, w(e) =1, w(f) =1, w(g) =0.01.

For the K4 subgraph {a, b, ¢, d}, according to the relaxed conflict graph
construction method, since pattern a is not a C'P, edge (a, b) satisfies the conflict
edge deletion condition, and the weights of @ and b are w(a) = 0.01 and w(b) = 1,
respectively, (a,b) will be deleted. Then we obtain the relaxed conflict graph

RG(V, ER, W) as Figure 3.6(d), where Ef = E — {(a,b)}.
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Figure 3.6: A sample of HETLD flow. (a) Initial layout. (b) Conflict graph.
(c) Conflict pattern identification. (d) Relaxed conflict graph. (e) Solution of
problem (3.2) or (3.4). (f) Feasible solution of HETLD.

By solving problem (3.2) or (3.4) (the two problems have the same solution
in this case), we obtain a solution ¥ with the minimum sum of weights: 2% =
(cs3, c3, C2, €1, T4, C3, C1), Where ¢ means the corresponding vertex is in the
color class Cy, k = 1,2, 3, and 4 means the corresponding vertex is not colored.
Hence C) = {d, g}, Cy ={c}, C5={a, b, f}, Ry = {e}.

As Figure 3.6(e) shows, color C is blue, Cy is green, C3 is orange, and Ry

is uncolored.

3.5.3.2 Legalization stage

However, patterns a and b in C3 are infeasible for the HETLD problem.
Hence we first consider inserting stitches to patterns a and b. By Algorithm 3.1,
we find a stitch insertion plan as Figure 3.6(f), where a stitch is inserted into
pattern a, and a is split into two sub-patterns a; and as. Then a; is assigned to
color class C7, and as is assigned to color class Cy. Furthermore, stitch insertion
is invalid for pattern e by calling Algorithm 3.2. Thus e is assigned to e-beam.

Finally, we obtain a feasible solution 2 of the HETLD problem:
xH = ({Cla 02}7 c3, C2, C1, Gb, C3, Cl);
Ci1 =Aay, d, g}, Co ={as, ¢}, C3=1b, f}, EB = {e}.
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For the solution ¥, the VSB number is Y icpp VSB; = VSB. = 1, and
the stitch number is 1. Actually, it can be seen that the solution is an optimal

solution of the HETLD problem for this layout.

3.6 Experimental Results

Our decomposition methods for the hybrid e-beam and triple patterning
lithography of general layout is programmed in C++ and run on a personal
computer with 2.7GHz CPU, 8 GB memory and the Unix operating system. We
test our method on the ISCAS-85 & 89 benchmarks provided by Yu et al. [105].
In this chapter, the minimum coloring spacing is set as 160nm, the minimum

pattern size min,, and the overlap margin min,,, are set as 10nm.

Since this chapter aims at hybrid decomposition for general layout, we ig-
nore the row structures of the test benchmarks. Note that EBL is low through-
put, and the general e-beam is a variable-shaped beam (VSB), which means
that if a pattern is printed by e-beam shot, then it would be printed by several
VSBs. Therefore, for the purpose of throughput, we use the number of VSBs
mainly to evaluate the performance of the compared methods. Moreover, stitch
may lead to potential functional errors of a chip during manufacture, hence the

number of stitches is another comparison criterion.
3.6.1 Statistics and Analysis

Since one concern of this chapter is reducing the size of the problem, we
compare some statistics of the initial conflict graphs and the relaxed conflict
graphs. The statistics on all benchmarks are listed in Table 3.1. The data in the
columns “#P” and “#E” are the numbers of patterns and conflict edges in the
conflict graphs, respectively. The data in the column “Ratio” of “initial conflict
graph” and “after graph reduction” are the ratios between the numbers of edges
and patterns. Every data in the column “#ANC” is the average number of

patterns on the number of connected components. Every data in the column
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Table 3.1: Statistics of hybrid e-beam and TPL layout decomposition bench-
marks with min., = 160nm

Initial conflict graph After graph reduction After Relaxing
#P #E  Ratio #ANC #P #E  Ratio #ANC #EF Ratio®

C432 1109 2160 1.95 65 478 966 2.02 19 890 1.86
C499 2126 4590  2.16 41 1342 2827 211 21 2549 1.9
C880 2411 4434 1.84 35 1187 2282  1.92 17 2162 1.82
C1355 3262 5906 1.81 36 1323 2583 1.95 17 2453 1.85
C1908 5125 8846 1.73 36 1580 3049 1.93 14 2914 1.84
C2670 7933 14480 1.83 36 3896 7687  1.97 18 7302 1.87
C3540 10189 17798 1.75 38 4389 8171  1.86 13 7758 1.77
C5315 14603 26467 1.81 40 6686 12768 1.91 17 11940  1.79
C6288 14575 26038 1.79 38 5251 10033 1.91 16 9476 1.8
C7552 21253 37930 1.78 43 9033 17336 1.92 17 16365  1.81
51488 4611 8769 1.9 35 3020 5877 1.95 26 5461 1.81
538417 67696 126215 1.86 105 28978 61522 2.12 17 97507  1.98
535932 157455 317832 2.02 133 88188 192619 2.18 27 179621 2.04
538584 168319 314785 1.87 83 70121 151141 2.16 16 141199 2.01
515850 159952 309753 1.94 77 87216 184948 2.12 22 172449  1.98

Avg. 42708 81733 1.87 56 20846 44254 2.00 18 41336  1.88
Ratio 1.00 1.00 100 1.00 049 054 1.07 0.33 0.50 1.01

Circuits

“H#EF” is the number of conflict edges in the relaxed conflict graph, and every
data in the column “Ratiof” is the ratio between the number of edges and

patterns in the relaxed conflict graph.

From Table 3.1, comparing with the initial conflict graph, the number of
patterns and the number of conflict edges are only half left after graph reduction,
which shows that the graph reduction techniques used are effective. Note that,
conflict edges are removed at two stages, one is at the graph reduction stage
and another one is at the relaxed conflict graph (RG) construction stage. From
the column “Ratio” of “initial conflict graph”, the average value is 1.87, which
means the number of total conflict edges is nearly 1.87 times as many as the
number of total patterns for every benchmark. From the column “Ratio” of
“after graph reduction”, the average value is 2.00, which means that after graph

reduction the conflict graph is denser than the initial conflict graph.

The graph reduction stage mainly removes vertices with degree less than

three and contained vertices and remove the incident edges, while the RG con-
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struction stage aims at removing conflict edges from dense structures. Compar-
ing the column #Ef with the column #E in “after graph reduction”, it can be
found that the number of edges of #E is reduced to #Ef by 0.54/0.50=8%.
This implies that removing edges at the RG construction stage is effective for
dense graph structures. Furthermore, comparing the data in the two column-
s “#ANC” indicates that, the average number of patterns in every connected
component in the relaxed conflict graph is only one-third of the initial graph.
Thus, it is less enough for solving 0-1 linear programs (3.2) and (3.4) on every

connected component.

The most time consuming computation in our two stage decomposition
method is solving the binary linear program (3.2) or (3.4) by the cutting-plane
approach in the software package GUROBI. In order to speed up the compu-
tation, we set the parameter gap in GUROBI [3] as a larger value for larger
connected components. The parameter gap is used to control the termination
criterion in the cutting plane approach, which is

|f(z) — LB
— 0 < gap,
|f ()]
where f(x°) is the currently minimal value, and LB is the lower bound obtained

by linear program relaxation of the binary linear program (3.2) or (3.4).

For every relaxed conflict graph, we count the number of connected com-
ponents with vertex number between 60 and 100, and the number of connected
components with vertex number not less than 100, respectively, and put them in
columns “#> 607 and “#> 100" in Table 3.2, respectively. We test our hybrid
decomposition method with different gaps in the cutting plane approach for the
ILP of the ESTMA problem: i) less gap, gap = 10~* for all connected compo-
nents; ii) larger gap, gap = 0.4 for connected components with vertex number
less than 60, gap = 0.5 for connected components with vertex number between

60 and 100, and gap = 0.6 for connected components with vertex number not
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Table 3.2: Comparison of decomposition results with less gap and larger gap
for the ILP of the ESTMA based decomposition, min., = 160nm

Cireuits CC number and size L£CP Less gap Larger gap
#CC #>60 #>100 #VSB  #S CPU(s) #VSB #S CPU(s)
C432 25 1 0 275 85 7 9.77 86 6 2.24
C499 63 4 1 1042 279 33 109.06 281 31 7.89
C880 68 4 0 525 110 89 26.08 110 89 7.44
C1355 76 3 0 549 146 62 21.30 146 62 7.98
C1908 116 3 0 561 152 86 25.42 152 86 11.28
C2670 214 2 2 1549 423 271 200.10 430 264 21.09
C3540 347 5 0 2080 431 362  55.51 431 362  30.27
C5315 399 8 1 3363 858 344 17645 862 341  37.32
6288 338 5 2 2673 738 236 27380 740 234  32.98
C7552 534 8 3 3840 1007 524 365.33 1019 515  51.85
S1488 116 6 2 1488 416 182 256.75 419 180  24.60
S38417 1723 26 5 17218 4048 1331 966.22 4069 1314 177.65
S35932 3243 297 74 52982 N/A N/A >3600 13258 2688 718.53
S38584 4463 54 3 46445 10021 3270 1321.14 10063 3233 269.90
S15850 4012 164 42 50086 N/A N/A >3600 13011 3689 487.90

Avg. 1049 39 12312 1439 523 292.84 1447 517  52.50
Ratio 0.99 1.01 5.58 1.00 1.00 1.00

e

less than 100. The test results of the ESTMA based decomposition method are
listed in Table 3.2.

In Table 3.2, the data in the column “#CP” are the numbers of conflict
patterns in the conflict graphs. These patterns should be prior assigned to T-
PL masks, since conflicts at these patterns can hardly be eliminated by stitch
insertions. In columns “#VSB”, “#S” and “CPU(s)”, we list the total VSB
numbers, the total stitch numbers and the runtimes by our ESTMA based de-
composition method, respectively. On the one hand, the average runtime of the
ESTMA based method with less gap is 5.61x more than with that with lager
gap. Moreover, the ESTMA based method with less gap is very slow for the
connected components with many vertices, especially for benchmarks S35932

and S15850, which cannot be solved in one hour.

On the other hand, it can be seen that our ESTMA based decomposition
method with larger gap produces slightly more VSB numbers than that with
less gap for almost all benchmarks. More precisely, the ESTMA based method
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Figure 3.7: Decomposed layout for benchmark C880 with min.s=160nm.

with larger gap achieves nearly the same good solutions as that with less gap
for the benchmarks. Actually, this is due to the cutting plane method and our
backtrack coloring algorithm. First, although the gap is not small enough, the
cutting plane method may still obtain an sub-optimal solution of the binary
programming problem. Second, the backtrack coloring algorithm can reduce

the number of VSBs by local swapping.

Figure 3.7 presents our decomposition result for benchmark C880 with
min.s = 160nm, which is obtained by the ESTMA based method with larg-
er gap. In the figure, green, red and blue colors denote Mask 1, Mask 2 and
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Mask 3, respectively, and yellow denotes E-beam.

3.6.2 Comparisons

In this subsection, we compare four hybrid e-beam and TPL decomposers:
“TCAD’16” is the decomposer of [96], “Extended TOC’17” is the decomposer
extended from [59], “ESTMA” and “MDSRsMA” are the two decomposition
methods proposed in this chapter based on problems ESTMA and MDSR,;MA

respectively.

Yang et al. first focused on hybrid e-beam and multiple patterning lithog-
raphy for general layout decomposition, and considered two different objectives
to evaluate the throughput of EBL: minimum total VSB number and minimum
total area for e-beam shot. Since for the e-beam direct writing strategy, total
area of e-beam shot may not be an essential factor [66,104], and the writing time
is the main factor for evaluating the throughput of EBL [31,35,42,82]. Further-
more, for VSB e-beam shot, the writing time mainly depends on the number
of VSBs (rectangles). Hence we mainly compare our method with [96] on this
aspect. Ref. [96] only lists results of ten benchmarks. We cite them directly for

comparisons, since the code of their method is not available to us.

In Table 3.3, the results in the column “Extended TOC’17” are adapted
from [59]. Since the objectives in [59] are conflict number and stitch number,
we directly use e-beam shot to eliminate conflicts in the decomposition results
by [59]. For fair comparison, we use VSB as few as possible to eliminate conflicts.
The data in columns “ESTMA” and “MDSR;MA” are the results of the two
methods with larger gap.

The results of the four decomposers are reported in Table 3.3. Data in the
columns “#VSB” and “#S” are the total VSB numbers and the total stitch
numbers by the decomposers on the tested benchmarks, respectively. Data in
the columns “CPU(s)” are the runtimes by the respective decomposers. In row

“Avg.1”, we list the average results on all the benchmarks. Since Ref. [96] did

92



A5 o Pt 1) 36 BE T R XA =) 20 A T I

8z'e  LIT 960 00T 00T 00T 96°0 ITT 10% 18T 66T 60T orpey
GT'6LT  ¥gZl  6CEV 167ce  08F¢  OFLF  ¢'SAyY
ZO'€Ty 10T 006C  €6'GCT  €L8  6Q0€ 12T 996 €809 1'8AY
6€°0VIT 0LEV  Cg€el 6287  689¢  TIOST  ATLVG  L68€  TFSCC 008 €869  T6CFT  0G8STS
IC¥R9  60LE  9£66 6'69¢  €8c€  €900T  ¢T'06  6LL 6SV0T  L'€LL  TET9  LG60T  TRGRES
RE'89LC  8GTE  GETZT  €C'QTL  889%  8GTET  S6I0T  9ICE 86697  6LITT  ¥8IL  €968T  TE6SES
6€'%6C  LSPT  GeTh  G9°LLT FIET  69gF ¥8'C9  98¢T  G6E8  FFCIE  €0¥E  ¥E9F  LIFRES
6T°GTT 961 1% 9V¢ 081 61¥ 67°LC  OLT 4 V/N V/N V/N SISARS
€099 ¥09  OTTI G8'TC  GIC  GBIII g&'LT 0TF  6EVT 90%6  OF9  TgET  TSaLD
LT6IT  F9¢ 4d) 86ce  ¥eT 0F L Al 1.2 6621 V/N V/N V/N 88290
GF'9LT 98¢ 606 geLe  TvE 126 8O'TT  29% 68T €869  GI¥  €I0T  GIESD
2€'99T 6 65V 1708 29¢ K57 68°'F 89¢ 89/, TS 08¢ V.5 0veeD
9606  ¥6¢ 1% 60TC  ¥9C 0E¥ AN TS 9.8 V/N  V/N V/N  0L92D
L¥'eLl 36 96T 8711 98 el e 96 €8¢ V/N  V/N  V/N  S061D
¥1°0g ) GFT 86 29 97T 96°¢ 98 c1e vL 0T 66 L0% GGe1D
/F ¢l 76 TT i) 68 01T e ¢l L6Z V/N V/N V/N 088D
62091 T VLT 68°L I¢ 18¢ 66 e €9 WA 9% cee 6670
10°€ T I8 A 9 98 68°0 6 z91 C LT 80T zeEVD
(S)NdD  S#  dSA#  (9)NdD  SH#  dSA#  ()ndD  SH# dSA#  (9)ndD  SH# dSA#
VIN'YSAIN VINLSH [66] LT.00L Popuoixy [96] 9T.AVOL SHID

w9y = urm

‘srosodmodep (T HH INOJ oY} Jo sjnsal uostredwo)) ¢°¢ S[qel

93



TN e VATS'S

not report the test results on the benchmarks C880, C1908, C2670, C6288 and
51488, we do not list the average results of “TCAD’16” on all the benchmarks.
However, we list in row “Avg.2” the average results of “TCAD’16” on all the
benchmarks except the five benchmarks. For fair comparison, we also list in row
“Avg.2” the average test results of “ESTMA” on all the benchmarks except the
five benchmarks. In the last row “Ratio” of Table 3.3, we list the ratios of the
average results of “TCAD’16”, “Extended TOC’17” and “MDSR;MA” based
on the results of “ESTMA”. It must be remarked that, the data in the last row
“Ratio” of “TCAD’16” are calculated based on the data in row “Avg.2”.

From Table 3.3, it can be seen that the average VSB number by [96] is 9%
more than that by our ESTMA based method, and the average stitch number
is twice more than that by our ESTMA based method. Moreover, it can be
seen that the runtime of the method in [96] is 1.81 times more than that of our
ESTMA based method. Furthermore, it must be noted that their decomposer
was run on a workstation with 3GHz CPU and 4GB memory, which is better
than ours. This together with the comparison results demonstrates that our
ESTMA based method works better than the decomposer in [96] on the test

benchmarks.

Comparing the data of columns “Extended TOC’17” and “ESTMA” in
the row “Ratio”, it can be seen that the average VSB number of “Extended
TOC’17” is twice more than that of the ESTMA based method. This is due to
that, the method in TOC’17 focuses on the minimum conflict number instead of
the VSB number, while a pattern may be printed by more than one VSB shot.
Furthermore, the average stitch number is 11% more than that by the ESTMA
based method. Hence, extending the TPL layout decomposition method in [59]
directly to solve the HETLD problem is not a good choice.

At last, we compare the data of columns “ESTMA” and “MDSR;MA”
in the row “Ratio”. As expected by theory, the average number of VSB in
“MDSR;MA” is 4% less than that in “ESTMA”, and the average number of
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stitch in “MDSR;MA” is 17% more than that in “ESTMA”. This demonstrates
that the MDSR;MA based method assigns more pairs of a CP and its CAPs
to R, simultaneously at the first decomposition stage, and then there are more
patterns in R, are assigned to TPL masks by inserting stitches. Finally, the
average runtime of MDSRsMA is 3.28 x of ESTMA. This is due to that the ILP
formulation in the MDSRsMA based method has more variables and constraints

than the ILP formulation in the ESTMA based method.

3.7 Summary

Hybrid e-beam and triple patterning lithography is a new technology for
manufacture of VLSI circuit, which combines the advantages of e-beam and T-
PL. Layout decomposition is a core problem in the hybrid lithography, which is
NP-hard on the general layout. In this chapter, we propose a two stage layout
decomposition flow for the HETLD problem, which achieves decomposition by
two steps. First, we consider the e-beam and stitch aware TPL mask assignment
(ESTMA) problem, and then the problem is relaxed by deleting some conflict
edges, which is used for fast obtaining a solution with some conflicts. Second,
the infeasible solution with conflicts is legalized to a feasible one of the HET-
LD problem by stitch insertion and e-beam shot. To speed up decomposition,
we reduce the problem size by removing some vertices and some edges before

decomposition.

Furthermore, in order to obtain a better solution with less VSB number, we
propose the extended minimum weight dominating set for R4 mask assignment
(MDSR4MA) problem. By solving the MDSR;MA problem in the first decom-
position stage, we can obtain a solution with the patterns in R, more likely
being assigned to TPL masks by stitch insertion. However, the ILP formulation
of the MDSR,;MA problem has many more variables and constraints than the
ILP formulation of the ESTMA problem.
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In the decomposition process, our objective is maximizing e-beam through-
put (minimizing VSB number) and minimizing stitch number. Experimental
results show the effectiveness of the ESTMA and the MDSR,MA based decom-

position methods, comparing with the state-of-the-art decomposer.
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Chapter 4 Discrete Relaxation Method for
Contact Layer Decomposition of DSA with
Triple Patterning

4.1 Introduction

As the pitch size between features shrinking and the number of nodes in-
creasing, manufacture of integrated circuit (IC) layout is more and more difficult.
This urges on series of manufacture technologies, such as 193nm ArF immersion
optical lithography and the related multiple patterning lithography, electron
beam lithography, block copolymer directed self-assembly, and extreme ultra vi-
olet lithography [11,18,73]. IC layouts consist of patterned lines and holes. The
lines define the active device regions, gate electrodes, and the wirings between
the devices. The holes define the electrical contacts between the wires and the
transistors [10,99]. Some of the above manufacture technologies are popularly
used to pattern line features in a layout [105], but the DSA technology is fit for
patterning the dense hole features [75]. Especially, in 7nm nodes distribution
of the features on contact/via layer is dense and aligned [91], hence the DSA

technique is necessary.

To pattern contact holes by DSA, guiding templates are usually used to
form contacts [44,77]. For sparse structure, a number of single-hole templates are
used to form contacts. For dense structure, too close templates would generate
conflicts [7,52,93]. To reduce the conflicts, some of the contacts within a short
distance would be grouped together in a multi-hole template [7,52,93]. As shown
in Figure 4.1(a), the left contact is contained in a single-hole template, and the

right two close contacts are grouped in a two-hole template.

However, grouping more than one contacts in a multi-hole template may

introduce overlays. For different guiding templates with different shapes or
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. contact
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. < conflict
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Figure 4.1: An example of contact layer decomposition for DSA with TPL. (a)
A template assignment for the sparse layout. (b) A dense layout. (c) A mask
and template assignment for the dense layout.

sizes, the overlays are different. Specifically, complex (irregular shape) guiding
templates may introduce large overlays and the contained contacts may not
be patterned correctly [93]. Hence, during template assignment, the cost of a

guiding template should be considered.

Furthermore, for a very dense contact layer layout, the contact layer fabri-
cated by single patterning is unqualified due to a number of conflict errors. Hence
the DSA with multiple patterning (DSA-MP) technology is a solid choice, and a
crucial problem in DSA-MP is the mask and template assignment. An example
of mask and template assignment for DSA with triple patterning (DSA-TP) is
shown in Figures 4.1(b) and 4.1(c). Figure 4.1(c) is a template assignment of the
layout in Figure 4.1(b), where the three colors represent three masks, and the
right two contacts are contained in a vertical two-hole template, and a conflict
is generated between the two green one-hole templates due to the small pitch

between them.

Recently, some works concerned the mask and template assignment prob-
lem of DSA-MP [7,52], including the mask and template assignment problem of
DSA with double patterning (MTADD) and with triple patterning (MTADT).
For the MTADD problem, Ref. [52] has obtained good enough solutions for the
tested benchmarks comparing with the solutions of the exact integer linear pro-
gram formulation. However, the solutions still have many unresolved conflicts,
although under their conflict spacing setting, the distributions of contacts in

the tested layouts are sparse. Therefore, it is necessary to use triple masks for
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the contact layer with 7nm nodes. In this chapter, we consider the mask and

template assignment problem of DSA-TP (MTADT).

For the row structure layout, Xiao et al. [93] proposed three methods and
compared their effectiveness. These methods are: 1) color first iterative; 2) group
first iterative; 3) shortest path based optimal decomposition. By comparisons,
the shortest path based method achieved the best decomposition. For the general
layout, Badr et al. [7] first considered the MTADM problem and formulated it as
an integer linear programming problem, and proposed a maximum cardinality
matching (MCM) based method to quickly obtain a result. However, the method
in [7] has some issues. In the aspect of problem formulation, the method in [7]
does not consider the template cost, which is different for different types of
templates. In the aspect of solution method, Ref. [7] proposed two methods
for the MTADT problem. However, since many variables and constraints of
template grouping are introduced, the ILP formulation is too complex to fast
solve. Moreover, the MCM based method is a grouping first method, and the

solution quality is unknown.

In order to improve the quality of decomposition results of the MTADT
problem, Kuang et al. [52] considered the simultaneous template optimization
and mask assignment problem of DSA with triple patterning. They proposed a
look-up table (LUT) based assignment method, which finds all the possible 3-
colorable sub-graphs by removing some edges. The method is fast and effective
for sparse and small graph. However, since the number of 3-colorable sub-graphs
of a graph is exponential, the storage size of LUT would not be scalable for very
dense or large graph, and it is time consuming to check the LUT. In order to
reduce runtime, the method in [52] does not store and check all 3-colorable sub-
graphs. This will lose optimality of the results, and the gap between an obtained

solution and the optimal solution is still unknown.

In this chapter, we propose a discrete relaxation based decomposition method

to solve the MTADT problem of general layout. The discrete relaxation method
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is a general scheme for dealing with hard discrete optimization problems, which
relaxes a hard problem to an easier one, and then the relaxation solution is le-
galized to a solution of the initial problem [59]. An advantage of the method is
that the solution quality can be evaluated in the experiment. The evaluation of
a solution is significant for an NP-hard problem. If we know the gap between an
obtained result and the optimal value of an instance, then we will know whether
the solution is good or not. This scheme has been proposed and used to address
the triple patterning layout decomposition problem [59]. However, the discrete
relaxation method should be designed carefully according to the feature of an

addressed problem.

For the MTADT problem of general layout, our main contributions are

listed as follows.

e We sum up general rules for the costs of vertical or horizontal templates

with different sizes, and construct a weighted conflict grouping graph.

e Basing on the weighted conflict grouping graph, we propose a novel inte-
ger linear program for the MTADT problem, which is not equivalent to
the MTADT problem but provides a lower bound on the optimal value of
the MTADT problem. Moreover, some valid inequalities are introduced for

cutting some no good solutions, and obtaining a better lower bound.

e We propose a template assignment approach to transform a relaxation solu-
tion to a feasible solution of the MTADT problem, which provides an upper
bound on the optimal value of the MTADT problem. According to the ob-
tained lower bound and upper bound, we can evaluate the quality of our
experimental results. Specially, if the upper bound is equal to the lower

bound, then we obtain an optimal solution of the MTADT problem.

e Comparisons of experimental results show that our decomposition method

is effective. More specifically, the gap between the obtained upper and
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Figure 4.2: Template types. (a)-(d) Available vertical and horizontal templates.
(e)-(g) Illegal templates.

lower bounds is 0.0% for most of the sparse benchmarks, which shows the
optimality of the obtained results. And the average gap is 0.4% for the
dense benchmarks, which shows the goodness of the obtained results for

dense layouts.

4.2 Preliminaries

In this section, first we introduce the types of the DSA guiding templates,

and then we describe the mask and template assignment problem of DSA-TP.

4.2.1 DSA Guiding Template

To print contact holes by DSA, guiding templates are needed, which are
usually fabricated by conventional optical lithography technology [99]. Thus
the resolution is limited by the pitch of guiding templates. For sparse structure,
the contact pitch is big enough, hence the contacts can be contained in a series
of single-hole templates. But for dense structure, the contact pitch is too small
to satisfy the resolution for numerous single-hole templates, and multi-hole tem-

plate would be used to guide a group of contacts for improving the resolution.

Theoretically, the type of multi-hole template could be of any shape [33].
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Figure 4.3: Comparison of the costs of different templates. (a) Rule 1). (b) Rule
2). (c) Rule 3).

However, complex guiding template may introduce large overlay and the intend-
ed contacts may not be patterned correctly [93]. Such as the diagonal templates
(Figure 4.2(e)), the local diagonal templates (Figure 4.2(f)), or the “L” shape
templates (Figure 4.2(g)), they cannot be printed reliably, hence the results af-
ter printed should be verified by the optical proximity correction process, which
is of high cost [52,92]. Furthermore, in order to consider the complex templates
for the DSA technology, the grid model should be modeled for the contact layer
layout [39,70]. However, for some special contact layer layout, under the given
conflict spacing and grouping spacing, some contacts do not align to the gird
line. This may lead to that some templates cannot properly guide the matching
contacts. In this chapter, we consider the MTADT problem without grid model.
Hence under the gridless assumption and for the reason of avoiding high correc-
tion cost, we only consider the vertical and horizontal templates as in [52,93].
That is, only a group of contacts in a vertical or horizontal line can be grouped

into a template.

For vertical or horizontal templates, different sizes of templates have differ-
ent costs [99]. The main factors deciding the cost of a template are the number
of holes in the template and the size of the template. It must be remarked
that, the hole pitches in a template may not be uniform since the distribution

of contacts in a layout may not be regular. Thus, for two templates with the
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same number of holes, their costs may be different. But for simplicity, we only
consider in this chapter the number of holes as the evaluation of cost of a vertical

or horizontal template as in [52].

We sum up three rules on the cost of a template, which are important but

not unique:

1. A template with more holes will have higher cost.

2. A template will have higher cost than two or more templates for grouping

the same number of holes.

3. Suppose that any two neighboring holes in a template is regarded as a pair.
A template will have less cost than two or more templates if the latter

templates have the same number of pairs as the former one.

Rule 1) is due to that, a template with more holes is more difficult to
control the lithographic variations [33,92]. Rule 2) is due to that, a template
containing several holes is more difficult for lithographic variations than several
other templates containing these holes. As for rule 3), the latter templates in-
volve more contacts, which may generate more manufacture errors [92]. Figures

4.3(a)-4.3(c) show examples for rules 1-3, respectively.

Let T} be a template with & holes. Figures 4.2(a)-4.2(d) show the vertical
and horizontal templates, 17, 15, T3, - -+, and Tk, respectively, where K is the
maximum number of holes in a template. Let costr, be the cost of template
T}, and we suppose that costy, is an integer in this chapter. According to the
above three rules, the costs of templates are set as: 1) costy;, = 0. This is because
every contact can be guided by a single-hole template, while the use of multi-hole
templates is for eliminating conflicts which needs extra cost; ii) costy, = 3, as a
baseline; iii) 2costy,_, > costy, > %costml, k = 3,4,--- K. This inequality
indicates that the average cost of holes in T}, should be greater than that of holes

in Tk—l .
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The above setting rules for the cost of template is compatible with the
settings in previous works [52,92,93]. In [92], Xiao et al. formulated an equation
for calculating the cost of template: ¢; = A\ X p;, where ¢; denotes the cost of the

Z’t

" multiple template, and p; is the number of templates pairs in the multiple
template, i.e., p, = k — 1 for template Ty. Suppose the cost of template Tp
is costy,, then costy, = 2costr,, costy, = 3costy, = %costT3, <o, It is easy
to show that 2costy, , > costr, > ﬁcostml includes the above equalities.
Furthermore, as an example of setting in [93], Xiao et al. set the costs of
templates costr,, costr,, and costr, as 0, 5, 8, respectively. This setting still
satisfies 2costy,_, > costy, > %costml. In another work [52], Kuang et al.
assumed that the cost of a template with more than 2 holes is always larger
than the summation of the costs of the constituent templates, e.g., costp >
costy, + costp, and costy, > 2costpe. This assumption is also compatible with

our assumption.

Note that, when costy, = 3 and costy, is an integer, it is easy to show
that costy, = 2k — 1 is the tightest setting for satisfying 2costy, _, > costr, >
k—ﬁlcostTk_l, k =3,4,--- K. That is, when costy, = 3 and costy, is an integer,

it holds that costy, > 2k — 1.
4.2.2 Problem Formulation

Some involved notations are introduced as follows:

e d., the minimum conflict spacing;

d

the minimum grouping spacing;

Imin)

d the maximum grouping spacing;

Imazx?

C1, Cy, 5, the colors of TPL;

B, the weighting parameter between the conflict number and the total cost

of templates, which is set as 8 = 0.01.
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Figure 4.4: Conflict spacing and grouping spacing.

For the above notations, d <d < d.. If the distance between two

Imin Imazx

contacts is less than the minimum conflict spacing d., and the two contacts
are assigned to the same mask without grouping, then a conflict is generated
between the two contacts. In order to reduce the number of conflicts, we group
some contacts together according to the template types defined in Section 4.2.1.

Then the MTADT problem is defined as follows:
The mask and template assignment problem of DSA-TP F,.

Given: Contact layer layout, the set of vertical and horizontal templates,

three masks, parameter (.

Find: A mask assignment for all contacts, and groups of some of the con-

tacts by available multi-hole templates.

Subject to: Every contact is assigned to only one of the three masks, and
is assigned to only one of the templates. Moreover, all contacts in a template
must be assigned to the same mask.

Objective: |C|45-T_Cost is minimized, where ¢;; € C' denotes the conflict
between contacts ¢ and j, and |C| is the number of conflicts, and T"-Cost is the

total cost of used templates.

4.3 Discrete Relaxation Method for Mask and
Template Assignment of DSA with TPL

In this section, we construct the conflict grouping graph (CGG) for a lay-
out, and propose a discrete relaxation of the MTADT problem using an ILP

formulation. In order to obtain a better relaxation solution, we introduce some
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valid inequalities for the ILP problem.

Before showing the discrete relaxation method for the MTADT problem,

we introduce the definition of discrete relaxation and its propositions as follows.

Definition 4.3.1 (discrete relaxation). Problem RP: 2% = min{ff(z) : z €
X1} is a discrete relaxation of problem P: z = min{ f(z) : # € X}, if there exists

an optimal solution zf* of problem RP, and there exists an optimal solution x*

of problem P such that fZ(z®*) < f(z*).

Proposition 4.3.2. If problem RP is a discrete relaxation of problem P, then

2B < 2.

Proposition 4.3.2 means that, we will obtain a lower bound on the mini-
mum value of the original problem by solving the discrete relaxation problem.

Specially, we have

Proposition 4.3.3. Suppose that problem RP is a discrete relaxation of prob-
lem P. Let 2™ be an optimal solution of problem RP. If 2/ can be transformed
to a feasible solution = of problem P, such that fZ(xf*) = f(x), then z is an

optimal solution of problem P.

For the discrete relaxation method, the function f#(x) and the solution set
XF must be carefully selected. Generally, we should select an X such that an
optimal solution of problem RP can be transformed easily to a feasible solution
of problem P, and the gap between the minimum values of problems P and RP

is not too large.
4.3.1 Conflict Grouping Graph Construction
First, we define the conflict grouping graph as follows.

Definition 4.3.4 (conflict grouping graph, CGG). The conflict grouping graph
is defined as an undirected graph CGG(V, E.), where V is the set of vertices,

E. is the set of conflict edges.
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Figure 4.5: Conflict grouping graph construction.

If the distance between two contacts ¢ and j € V is less than d., then
there exists a conflict edge e;; € E. between them; if the distance between two

contacts ¢ and j € V' is between d,, , and d and ¢ and j are in the vertical

gmaz
or horizontal line, then there exists a grouping edge e;; € E, between them.
Obviously, £, C E..

According to the distances between contacts, a layout with contacts is trans-
formed to a conflict grouping graph. This can be achieved in O(kn) runtime,
where n is the number of contacts, and & is the maximum number of contacts
within the minimum conflict spacing d. of contacts. Figure 4.4 illustrates the
conflict spacing and grouping spacing, and an example of conflict grouping graph
construction is shown as Figure 4.5(b), where all lines are the conflict edges and

dotted lines are the grouping edges.
4.3.2 Discrete Relaxation Based Mask Assignment

Discrete relaxation is an optimization method, which relaxes a hard min-
imization problem to an easier one by some relaxation techniques [59]. An
optimal solution of the relaxation problem provides a lower bound on the mini-
mal value of the original problem. In this section, we propose a way of discrete

relaxation for the MTADT problem.
4.3.2.1 Weighted Conflict Grouping Graph Construction

In the conflict grouping graph CGG, two contacts connected by a conflict
edge should be assigned to different masks or grouped by a template for MTADT.
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In order to reduce the conflicts and the total cost of used templates, we need to
decide which contacts should be grouped first, and which conflict edge could not
be eliminated by grouping. We distinguish the conflict edges by weighting them,
and then construct the weighted conflict grouping graph (WCGG). In order to

handle the grouping, we introduce a definition of negative edge as follows.

Definition 4.3.5 (negative edge, ne). A negative edge is an undirected edge
with negative weight in a graph. If there exist two vertices ¢ and j connected to
the same vertex k by grouping edges, i.e., ge;, € Ey, gejr € Ey, and contacts 7,
J are in the same vertical or horizontal line, then e;; is added to the graph and

called a negative edge.

Let E, be the set of negative edges. We define the WCGG as follows:

Definition 4.3.6 (weighted conflict grouping graph, WCGG). The weighted
conflict grouping graph is an undirected edge-weighted graph WCGG(V, E, W),
where V' is the set of vertices, F is the set of edges, E = E.U E,,, and W is the

set of weights of edges in F.

The weighting rule for edge e;; € E/ between contacts ¢ and j is set as

1.0, if €ij € Ec — Eg,
W5 = 0.03, if €ij € Eg;
—0.01, if € € E,.

Figure 4.5(c) shows an example of weighted conflict grouping graph.

According to the above weighting rule, we can see that:

1. If contacts 71, 7o are assigned to the same mask, and e;,;, € E, — E, then

there exists a conflict between 7 and j, and the edge cost is 1.0;

2. If contacts 71, iy are assigned to the same mask, and e;;, € E,, then the

edge cost is 0.03;
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Figure 4.6: Total edge costs of different templates.

3. If contacts i1, i2, 73 are assigned to the same mask, and e;,;, € E, €,,i, € Ey,

€iis € E, then the edge cost is 0.05;

4. If contacts iy, @9, ---, 1, k = 3,4, are assigned to the same mask, and 7y,
i9, - -+, i satisfy the T} template condition. It can be deduced that there
are k — 1 grouping edges and k — 2 negative edges, and then the edge cost
is 0.03(k — 1) — 0.01(k — 2) = 0.01(2k — 1);

Figures 4.6(a)-4.6(c) and Figure 4.6(e) show examples for the above cases 1-4.
4.3.2.2 Discrete Relaxation

We consider the following problem P; on the weighted conflict grouping
graph:

min Z wij(z; == x;) (4.1)

6ij€E

s.t. z; € {1,2,3}, VieV, (4.1a)

where x; denotes the assigned mask of vertex i.

Suppose Xy and X are the solution spaces of problems F, and P;, respec-

tively. For any solution z° of problem P,, every contact has been assigned to a
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mask and a template. However, for any solution z! of problem P;, every contact
has been assigned to a mask, but has not been assigned to a template. That
means, for any 2° € X, we can get a solution ! € X; from 2° by omitting the

template assignment.

Lemma 4.3.7. Suppose 2° € X is transformed to 2! € X; by omitting the
template assignment, X, and X; are the solution spaces of problems Fy and P,
respectively, and fo(z°) and fi(x!) are the objective functions of problems B,

and Py, respectively. Then fi(z') < fo(z?).

Proof. For any 2° € Xj, the total cost of problem P, is

K
fo(z®) = |C| + B - T_Cost = |C| +0.01 Y _ costr, | T,
k=2

where K is the number of template types, |C| is the number of total conflicts.
If contacts 7 and j are assigned to the same mask, e;; € E., and ¢ and j are not
assigned to the same template, then a conflict is generated between ¢ and 7, i.e.,
¢;; = 1. |T| is the number of used k-hole templates in 2°, where the contacts in
the same k-hole template should be in the same mask, and satisfy the vertical
or horizontal k-hole template conditions.

The cost of 2° consists of conflict cost and template cost. z! is obtained
from 2° by omitting the template assignment. Let £ = Er U Ep, where Er is
the set of edges between contacts i and j in the same template of 2°. Ep is the

set of edges between contacts 7 and j in different templates of 2°. Then

A =" wi(z} == 1))

eijGE
_ 1 1 1 __ .1
= E wij(z; == ;) + E wqj(z; == ).
eijGED €ijEET

First, for the contacts ¢ and j that are in the same template of 2°, according to
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the weight setting of problem P, it holds that

D wylal ==a)) = > wy

eijEET eijGET

{[0.03(k — 1) — 0.01(k — 2)]|T%|}

k=2
K
=0.01) (2k — 1)|Ty|
k=2
K
<0.01)  costr, |Tx|.
k=2

The last inequality is due to costy, > 2k — 1 for k > 2.

Second, we consider the cost between the contacts ¢ and j that are in
different templates of 2°. Here, we only consider the cost between contacts i
and j that are in the same mask, since if ¢ and j are in different masks, then
the cost is 0. Let E7, be the set of edges e;; € Ep and i and j are in the same
mask. Let Ep, = B, N (E. — E,), Ep, = Ey,NE,, and Ep, = E, N E,,. Then
E}, = Ep, U Ep, U Ep,. Moreover, |E, N E.| = |Ep, U Ep,| = |Ep,| + |ED,]
which is the number of conflicts |C'|. Then

D wiylaf ==aj) = Y wy

ei;€EpD ei; €E
= E wl-j + g wij + E wij
eijeEDl eijGEDQ e»;jGE'D3

= |Ep,| +0.03|Ep,| — 0.01| Ep,|

< [Ep,| + |Ep,| = C].

Therefore, for any 2° € Xy, and for 2! € X; which is obtained from z° by
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omitting the template assignment, we have

K
fi(zh) = Z wij(x; == x}) < |C| + O.OlZcostTk|Tk|

eijEE k=2

= fo(l’o)-

Theorem 4.3.8. Problem P; is a discrete relaxation of problem F.

Proof. Suppose 2% and z'* are optimal solutions of problems P and P, respec-

tively. By Lemma 4.3.7, we have

filz™) < filz") < fola™),

where z!" is obtained from z** by omitting the template assignment. Hence,

problem P, is a discrete relaxation of problem F. O

Corollary 4.3.9. Suppose an optimal solution z'* € X, of problem P, is trans-
formed to z%* € X by some template assignment. If fo(z%*) = fi(2'*), then z%*

is an optimal solution of problem F.

Corollary 4.3.9 holds obviously from Theorem 4.3.8. By Theorem 4.3.8, the
optimal value LB of problem P; is a lower bound on the optimal value OPT
of problem F,. By legalizing an optimal solution of problem P; to a feasible
solution of problem F,, we can obtain an upper bound U B on the optimal value
OPT of problem F,, and it holds UB — OPT < UB — LB. Thus Theorem
4.3.8 can be used to evaluate the quality of our experimental results, i.e., the

gap between our experimental result and the optimal value of problem F.

In order to solve the discrete relaxation problem P;, we transform P; to an

Integer Linear Programming (ILP) problem P, equivalently as follows:
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Figure 4.7: Corner incompatibility and triangle edges. (a) Weighted conflic-
t grouping graph. (b) A solution obtained by solving problem P,. (c) New
weighted conflict grouping graph. (d) A solution obtained by solving problem
Py

min Z Wi Cij (42)

eijEE
s.t. Tim + Tjm <1+ Cij, Veij € E, m = 1, 2, 3, (42&)
3
> im =1, VieV; (4.2b)
m=1
Tim, Cij € {07 1}, VieV, Veij eE, m=1,23.

In the above formulation, z;,, is a binary variable, which denotes the as-
signed mask for contact 7. If x;,, = 1, then 7 is assigned to mask m. c¢;; is
a binary variable, which is used for indicating whether a conflict is generated

between contacts ¢ and j.

In problem P,, Constraint (4.2a) is used to decide whether a conflict ¢;; is
generated between contacts ¢ and j. That is, for e;; € E, if contacts ¢ and j are
in the same mask, then ¢;; = 1. Constraint (4.2b) is used to select one of the

three masks for contact <.

4.3.3 Improving the Lower Bound by Adding Valid Inequalities

The discrete relaxation problem P, can be solved for obtaining a lower

bound of problem F,. However, the gap between the lower bound and the

113



TN e VATS'S

optimal value of problem F, may be large, and the obtained decomposition
result might be of poor quality. The proposed discrete relaxation method is not
only for finding a lower bound of the MTADT problem, but also for obtaining
a good solution of the MTADT problem. Hence in this subsection we improve

the lower bound provided by problem P, by adding some valid inequalities

In the weighted conflict grouping graph WCGG of Figure 4.7(a), the solid
lines are conflict edges, and their weights are w = 1.0 respectively; while the
dotted lines are grouping edges, and their weights are w = 0.03 respectively.
Figure 4.7(b) shows an optimal solution z of problem P,, which has two conflict
variables ¢;,;, and ¢;,;; equal to 1, and the objective value of problem P, is 0.06.
However, contacts i1, i4 and 75 cannot be assigned to the same template at the
template assignment stage. Only one of the two conflict grouping edges e;,;,
and e;,;, can be grouped by a 7T, template, another one would cause a conflict,
and the total cost of Py is 0.01 x costp, + |C| = 1 4+ 0.01 x costy,. Thus, the
gap between the objective values of the discrete relaxation problems P, and the

problem F; is 0.94+0.01 X costp,. In the following, we let A\ = 0.94+0.01 x costr, .

In order to reduce the gap, and further improve the quality of an obtained
solution of problem P,, we should handle the case as in Figure 4.7(b). We call
the case as corner incompatibility (CI). More formally, corner incompatibility
is that, there exist at least two grouping edges incident to a contact k£ called
corner contact, and at least two grouping edges containing k are orthogonal.
Since corner incompatibility is not allowed, we preclude in this section corner
incompatibility by introducing some valid inequalities. The technique is adding

some extra edges, and these edges are called triangle edges, which is defined as:

Definition 4.3.10 (triangle edge, te). A triangle edge is an undirected edge in
a graph. If there exist two vertices ¢ and j connected to the same vertex k by
grouping edges, i.e., e;, € Ey, e, € E,, and if e;; ¢ E. U E,, then e;; is added
to the graph and is called a triangle edge. Let E; be the set of triangle edges.
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Figure 4.8: Structures with corner incompatibility. (a) “L” shape. (b) “T”
shape. (c) “Z” shape. (d) “+” shape.

In Figure 4.8, there are four types of structures with corner incompatibility
structure (CIS): i) “L” shape, {ex, ejr} € E, and {e;;} C E; as shown in
Figure 4.8(a); ii) “T” shape, {ei, €k, e} € Ey, {ea} C E, and {e;;, e;i} C E,
as shown in Figure 4.8(b); iii) “Z” shape, {ex, €k, e} C E,, and {e;j, e} C
E; as shown in Figure 4.8(c); and iv) “4” shape, {ewx, e, e, e} C Ey,
{ei, em} C E, and {e;;, eji, em, en} C Ey as shown in Figure 4.8(d).

In order to avoid the contacts in a C'1.S being assigned to the same mask,
we modify the WCGG as the newW CGG by adding some triangle edges, and
assign the weight of every triangle edge as w = A. Then we add four kinds of

new constraints to problem P, and call the new problem as P

For the “L” shape structure, if the three contacts i, 7 and k are assigned to
the same mask, then there exists at least a conflict due to corner incompatibility.
In order to obtain a better solution, we add some new constraints for contacts i,
j and k of the “L” shape structure to avoid the three contacts ¢, 7 and k being

assigned to the same mask. These constraints are

Tim + T + Tjm < 2+ ¢4, m=1,2,3, (4.3a)
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where contact k is a corner contact. Constraint (4.3a) is used to restrict that, if
the contacts i, 7 and k are assigned to the same mask, then the conflict variable
of triangle edge e;; € E; has ¢;; = 1.

For the “T” shape structure, if the four contacts ¢, 7, [ and k are assigned to
the same mask, then there exists at least a conflict due to corner incompatibility.
Similarly, we add some valid inequalities for the four contacts of the “T” shape

structure. These constraints are

Tim + Thm + Tjm < 2+ ¢;5 + ¢ji, m=1,2,3; (4.4a)

Ljm + Thm + Tim < 24 ¢5 + Cj1, m=1,2,3, (4.4b)

where contact k is a corner contact. Constraints 4.4(a)-4.4(b) are used to restrict
that, if the three contacts i, j and k (or j, [ and k) or the four contacts are
assigned to the same mask, then at least one of the conflict variables of the
triangle edges e;; and ej; is equal to 1.

For the “Z” shape structure, if the four contacts i, j, [ and k are assigned to
the same mask, then there exists at least a conflict due to corner incompatibility.
Similarly, we add some valid inequalities for the four contacts of the “Z” shape

structure. These constraints are

Tim + Tpm + Tjm < 2—|—Cij + Ci, m=1,2,3; (45&)

Ljm + T + Tim < 2+ €55 + Cpa, m=1,2,3, (4.5b)

where contacts k and j are corner contact. Constraints 4.5(a)-4.5(b) are used to
restrict that, if the three contacts 4, j and k (or j, [ and k) or the four contacts
are assigned to the same mask, then at least one of the conflict variables of the

triangle edges e;; and ey is equal to 1.
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For the “+” shape structure, if the five contacts 7, 7, [, h and k are assigned
to the same mask, then there exists at least two conflicts due to corner incom-
patibility. Similarly, we add some valid inequalities for the five contacts of the

“+” shape structure. These constraints are

xim+ka+xjm§2+cij+cjl7 m:172737
$jm+ka+xlm§2+cjl+clh7 m:1a273a
Tim + T + Thm < 2+ 1, + Chi, m=1,2,3; (4.6¢

Thm + Thm + Tim < 2+chi+cij, m = 1,2,3, (46d

where contact k is a corner contact. Constraints 4.6(a)-4.6(d) are used to restrict
that, if the three contacts in an “L” shape C'IS or the four contacts in a “T”
shape CIS are assigned to the same mask, then at least one of the conflict
variables of the triangle edges is equal to 1. If the five contacts in a “+” shape
C1IS are assigned to the same mask, then two conflict variables among the

triangle edges e;;, e;i, e, and ep; are equal to 1.

Actually, according to our experiments, the number of “T” shapes, “Z”
shapes and “4” shapes CIS is very small. After adding the C'I.S constraints,
the newW CGG of the structure in Figure 4.7(b) is constructed as Figure 4.7(c).
Then by solving problem P,f, we can obtain a discrete relaxation solution as

Figure 4.7(d) instead of Figure 4.7(b).

Theorem 4.3.11. Problem P, is still a discrete relaxation of problem P.

Proof. Suppose that f;7, f, and fy are the objective functions of problems Py,

P, and P, respectively. Suppose x°

is an optimal solution of problem F,, and
x is obtained from z° by omitting the template assignment, then z is a solution
of both problems P;~ and P, respectively. The difference between problems Py

and P, is the triangle edges of the three types of C'[.S. We analyze the cost of
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the three types of CIS in problem Py

Suppose Sy, is an “L” shape CIS, i, j and k are the three contacts of Sy,
k is a corner contact and te;; is the triangle edge. Let zp ={z;, zi2, zi3, xj1,
Tjo, Tj3, Tk1, Tko, Tgs}. Apparently, z; is a part of z. Let 29 be the part of
the solution z° of problem P, for S;. If i, j are assigned to different masks,
then the conflict variable of the triangle edge te;; has ¢;; = 0 for minimizing the
objective. If the mask of contact £ is different from both of the masks of ¢ and
7, then f5f (z1) = fo(2%) = 0; if the mask of k is the same as one of the masks
of i and j, say i, then f, (zz) = 0.03. And for 29, if the grouping edge gey; is
guided by a multi-hole template, then fy(2%) = 0.01 x costy, > 0.03; otherwise
a conflict is generated between k and i, and fo(z%) = 1. Anyway, it holds that
[ () < folal).

If all contacts 7, j and k of Sy, are assigned to the same mask, then constraint
4.3(a) will force ¢;; to be 1. On the one hand, f5 (1) = 0.06 + A =1+ 0.01 x
costr,. On the other hand, since Sy, is an “L” shape C'IS, (1) if in 29, Sy, needs
a conflict and a multi-hole template to contain one of the grouping edges in Sy,
then the decomposition cost for S is fo(2) = |C]+T_Cost = 1+0.01 x costrp,;
(2) if in 29, Sp needs two conflicts, then fo(2}) = |C| + T_-Cost = 2. Thus
£ (wn) < fola).

Hence it holds that f(z) < fo(x9) for Sp. For the “T” shape, “Z” shape

and “+” shape C'IS, we can prove similarly that the statement still holds.

Therefore, for an optimal solution z° of Py, and z obtained from z° by
omitting the template assignment, it holds that f;"(z) < fo(2°). Thus P, is

still a discrete relaxation of problem F. O

Similarly, Corollary 4.3.9 still holds for problem P, .

We use the Branch-and-Bound approach in the software package CPLEX [2]
to solve problem P,f. Since problem P is hard to solve in the large scale case,

we introduce some graph reduction techniques to reduce the size of the prob-

118



A5 o Pt 1) 36 BE T R XA =) 20 A T I

lem, such that it is easy to solve using the Branch-and-Bound approach. In this
chapter, the used graph reduction techniques include: connected components
calculation, vertices with degree less than 3 removal and 2-edge connected com-
ponents calculation [36,53,106]. The vertices with degree less than 3 removal
technique will remove some contacts. Since these removed contacts can be easily
assigned to templates without any cost of assignment, they would be handled
after the template assignment stage in Section 4.4. Furthermore, for the 2-edge
connected components calculation, if vertices ¢ and j are connected by a bridge
and are assigned to the same mask at the mask assignment stage, then a conflict
is generated between i and j. We can eliminate the conflict by rotating the col-
ors of one of the 2-edge connected components such that ¢ and j are in different

masks. Moreover, we do not need to consider template assignment for ¢ and j.

4.4 Template Assignment

After obtaining a discrete relaxation solution of problem Fj by solving prob-
lem P;", we must decide the template assignment for the discrete relaxation so-
lution. The solution of problem P, divides the initial layout (except removed
contacts) into three masks, and we obtain three decomposed layouts Ly, Lo, Ls.
Then we should consider the template assignment for every decomposed layout
L, (m =1,2,3), which is described as follows:

Template assignment for each decomposed mask

Given: A decomposed contact layout, a set of vertical and horizontal tem-

plates.

Find: A template assignment of contacts, which groups some of the con-

tacts by available multi-hole templates.
Subject to: Every contact is assigned to only one of the templates.
Objective: |C| + - T_Cost is minimized, where |C| is the number of

conflicts, and T _Clost is the total cost of used templates.
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Figure 4.9: Template assignment for layout graph. (a) A layout graph. (b)(c)
Two template assignment results.

For every decomposed layout L,, (m = 1,2,3), we generate a layout graph
LG,,, and consider the template assignment problem on LG,,. The definition

of LG, is:

Definition 4.4.1 (layout graph). The layout graph of a layout L,, is a graph
LG (Chy Eern), where Cy, is the set of contacts in the decomposed layout L,,,
E.n is the set of conflict edges of the conflict grouping graph CGG(V, E,.) which

are vertical or horizontal and connect only contacts in L,,.

Let E,,, be the set of grouping edges between any two contacts which are
in L,,. Obviously, Ey, C E.,. First we compute all connected components
CC of layout graph LG, (m = 1,2,3), and then deal with every connected
component one by one. Since the edges in E.,, are either vertical or horizontal,
the considered contacts in every connected component of LG,,(Cy,, Euy) are
lined up vertically or horizontally. Figure 4.9(a) shows a connected component
with 12 contacts of a layout graph LG,,, where the dotted lines are grouping
edges Egp,.

There exists some corner contacts in a CC. A corner contact may be one
of the three types: i) it is a corner contact belonging to a “4” shape structure;
ii) it is a corner contact belonging to a “T” shape structure; iii) it is a corner
contact belonging to an “L” shape structure. In Figure 4.9(a), i5 is a corner
contact belonging to a “+” shape structure, ¢7 is a corner contact belonging to

a “T” shape structure, and iy, is a corner contact belonging to an “L” shape
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structure.

For every isolated vertex in LG,,, it is assigned to a single-hole template.
For every C'C' without corner contact, all contacts in C'C' are lined up vertically
or horizontally, and we assign these contacts greedily to a template with the
most holes first. Otherwise, for the other complicated C'C of LG,,, we consider

a heuristic assigning method as follows.

Note that, once all corner contacts in a C'C' have been assigned to vertical
or horizontal templates, then the other contacts can be assigned optimally using
the method for a C'C' without corner contact. Hence, to obtain an optimal
template assignment for a complicated C'C', we only need to decide whether
a corner contact ¢ is assigned to a vertical or a horizontal template. Binary
variable y; is used to indicate if 7 is assigned to a vertical template or not. That
is, y; = 0 denotes that 7 is assigned to a vertical template; y; = 1 denotes that ¢

is assigned to a horizontal template.

In the experiments, the size of every C'C' is very small. Hence we check all
possible solutions of y to find an optimal template assignment. It must be noted
that, if the size of C'C' is large, then we may find a good solution by some greedy
tricks or local search algorithms.

Figures 4.9(b) and 4.9(c) show two template assignment results of Figure
49(a). When y is (0, 1, 0), then the result is shown as Figure 4.9(b), and
|C| =5, B-T_-Cost =0.01 x (costy, + 3costy, + 2costr,). When y is (0, 0, 1),
then the result is shown as Figure 4.9(c), and |C| = 4, - T_Cost = 0.01 x

(3costr, + costr, + costr,)

4.5 Experimental Results

Our discrete relaxation based mask and template assignment method for
DSA with TPL of general layout is programmed in C+++, and run on a personal
computer with 2.4GHz CPU, 4GB memory and the Linux operating system. We
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test our method on the benchmarks provided by Kuang et al. [52]. The width
of contacts and the minimum conflict spacing are scaled to 10nm to reflect the

pitch in advanced technology nodes.

In order to evaluate our method, we design two experiments with different
minimum conflict spacings. In the first experiment, the minimum conflict spac-
ing d. is set as 4lnm, the minimum grouping spacing d,, ., and the maximum
grouping spacing d,, .. are set as 10nm and 30nm, respectively, as in [52]. Note
that, increasing d. has the same effect as shrinking the sizes of nodes. In the
second experiment, the minimum conflict spacing d. is set as 51nm, the mini-
are set as

mum grouping spacing d and the maximum grouping spacing d

Imin Imax

10nm and 40nm, respectively. For simplification, the costs of templates are set
as costy, = 0, costp, = 3, costy, =2k —1, k= 3,4,---, K, in our experiments.

Statistics of the two experiments are listed in Table 4.1. In the table, for
each benchmark, every data in the column |V is the number of contacts, and
every data in the columns |E,| or |E,| is the number of conflict edges or grouping
edges in the conflict grouping graph C'GG, respectively. Moreover, every data
in the column “Ratio” is the ratio of the number of conflict edges to the number
of contacts for every benchmark. From the row “Ratio”, it can be seen that the
number of conflict edges in the second experiment is almost 1.87x the number in
the first experiment, while the numbers of grouping edges of the two experiments

are almost the same.

4.5.1 First Experiment

In [52], the listed experimental results only use T3 template to guide con-
tacts for experimental comparisons. Hence, in this experiment, we also only use
T, template for fair comparisons. In the mask assignment stage, we delete all
negative edges he;; in the set £,. And in the template assignment stage, regard-
less of the techniques in Section 4.4, given a layout graph, we generate guiding

templates T5 from left to right and up to down of the positions of the contacts.
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Table 4.1: Statistics of benchmarks for mask and template assignment for
DSA with TPL

First experiment Second experiment
|E.| Ratio  |E,]| |E,| Ratio  |Ey|

dpl-Vial 307739 203073  0.66 53120 373415 1.21 53228
dpl_Via2 256885 174502  0.68 33473 333247  1.30 33473
edl_Vial 400123 186480  0.47 56450 370029  0.92 56450
edl1_Via2 301607 119797  0.40 24587 228241  0.76 24587

fft_Vial 99509 61926 0.62 16306 113993 1.15 16308

ftt_Via2 90114 62944 0.70 12456 117854  1.31 12456
mm-_Vial 429664 267546  0.62 65426 487013  1.13 65585
mm_Via2 341789 218668  0.64 39882 409226  1.20 39887
pbl_Vial 79635 44668 0.56 11684 82017 1.03 11719
pbl_Via2 59110 30518 0.52 6752 58036 0.98 6752

Avg. 236617 137012  0.59 32013 257307  1.10 32044
Ratio 1.00 1.00 1.00 1.87 1.87 1.001

Circuits \4

i3 -=--- 4 > 05 ic <> i7

1 !

i8 i9
1

il0 ---- i <> i <> conflict

Figure 4.10: Ty template only assignment for the layout graph in Figure 4.9(a).

We group as many as possible the contacts by 75 templates, and then the rest
contacts are guided by single-hole templates. This trick is a greedy approach
which would find an optimal assignment. Figure 4.10 shows a T, template only

assignment for the layout graph in Figure 4.9(a).

We run the binary files of DAC’15 [7], ILP [7] and ASP-DAC’16 [52] pro-
vided by Dr. Kuang. The comparison results of DAC’15 [7], ILP [7], ASP-
DAC’16 [52] and ours are listed in Table 4.2. In Table 4.2, every data in the
column “|C|” is the number of conflicts, and every data in the column “|T5|” is
the number of used T5 templates for every benchmark. Moreover, the data in the

columns “COST” are the total cost of decomposition for DSA with TPL, which
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Table 4.2: Comparison results of mask and template assignment for DSA with TPL, d. = 41nm, d
30nm

Imin

DAC’15 [7] ILP [7] ASP-DAC’16 [52] Ours Lower
|C]  |Tz] COST CPU(s) |[C] |To] COST CPU(s) |C| [Tz COST CPU(s) |C| |TI»] COST CPU(s) DRS

dpl_Vial 13 29757 905.71 1.80 10 24 1072 16499 10 24 10.72 1.64 10 24 10.72 3.74 10.72
dpl_Via2 24 18191 569.73 1.59 0 400 12 498.37 0 400 12 291 0 400 12 3.30 12

edl_Vial 0 34233 1026.99  2.17 1 0.03  215.98 0 1 0.03 177 0 1 0.03 5.26 0.03
o&H\/\Swmew@mgw%wm H.@.o wo m.ﬂ Hmm#w o wo w.ﬂ w.mH o wo m.ﬂ w.ow w.ﬂ
o o
o o
H

Circuits

ftt_Vial 0 9183  275.49 0.76 0 0 53.65 0 0 0.59 0 0 1.28 0

ftt_Via2 11 6621  209.63 0.70 175 5.25  515.29 175 5.25 1.43 175 5.25 1.15 5.25

mm _Vial 14 37897 1150.91  2.55 11 25 1175 22092 1 25 11.75 1.94 1 25 11.75 5.56 11.75

mm-_Via2 18 22361 688.83 2.01 384 11.52  297.92 0 384 11.52 3.00
0

—_

0 0 384 11.52 4.43 11.52
pbl_Vial 1 7191  216.73 0.63 1 9 1.27 38.8 9 1.27 0.49 1 9 1.27 1.03 1.27
pbl_Via2 4 40044 1205.32 0.53 0 49 1.47 49.3 49 1.47 1.03 0 49 1.47 0.76 1.44
2 2
0 0

H
><m. wwwumﬂ@ﬁ.%m H.gw Emm.@qmmm.u@ wEmm.@ﬂ H.ﬁ Emm.mﬂ w.om m.@ﬂ
Ratio  4.19 191.60 120.99 047 1.00 1.00 1.00 73.02 1.00 1.00 1.00 0.57 1.00 1.00 1.00 1.00 1.00
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are calculated by COST=|C| + 0.01 X costy, x |Tz|. From the four columns
“COST”, we can see that, comparing with DAC’15, the results of ILP, ASP-

DAC’16 and Ours are significantly better for the mask and template assignment
problem of DSA-TP.

For all benchmarks with d. = 41nm and d = 30nm, ILP, ASP-DAC’16

9Imaz
and our method get optimal solutions. In fact, every data in the column “DRS”
is the optimal value of problem P, for every benchmark, which is a lower bound
on the optimal value of problem P, since P, is a discrete relaxation of problem
Py. By the similar claim as Corollary 4.3.9, if the assignment cost (column
“COST”) is equal to the objective value of P;~ (column “DRS”), then we obtain
an optimal mask and template assignment. Comparing columns “COST” in
“ILP”, “ASP-DAC’16” and “Ours” with column “DRS”, it can be seen that

most of the results of the four columns are equal, which means that all the three

methods obtain optimal solutions for most of the benchmarks with d. = 41nm

and d,

gmas = 30MUM.

Although the method in ILP [7] can evaluate the quality of the experimental
results as our method, it can be found that the computing time of the ILP is
73x more than ours. In addition, although the method in ASP-DAC’16 [52] is
about twice faster than our method, it cannot evaluate the quality of the results.
This is due to that, the simultaneous assignment method for DSA with TPL
in [52] achieves decomposition basing on an off-line Look-Up Table for matching
3-colorable sub-graphs. When the number of nodes is small, the method can
quickly match all possible 3-colorable sub-graphs. However, if the number of
nodes is large, the Look-Up Table would be too large to match all sub-graphs
and cannot find all possible 3-colorable sub-graphs. In order to show the issue

of the simultaneous assignment method [52], we design another experiment in

the following subsection.
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Figure 4.11: Mask and template assignment for benchmark dpl_Vial with d. =
51nm and d = 40nm.
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4.5.2 Second Experiment

To further evaluate the effectiveness of our assignment method on more
dense layout, we perform another experiment on the benchmarks with d. =

51lnm and d = 40nm. The comparison results are listed in Table 4.3. In

Imaz
the table, |T3| and |Ty| are the numbers of used T3 templates and Tj templates,
respectively, and T_Cost is the total cost of used templates, which is calculated
by T_Cost=0.01 x (costry, x |T5| + costy, x |T3| + costr, x |Ty|). The notation
COST is the total cost by the respective method for the assignment problem,
and is calculated by COST=|C|+T_Cost. The other notations are the same as

those in the first experiment.

The binary files of [52] only use Ty and T3 templates to guide the group
contacts, while our method does not restrict which type of template is used.
Since the experimental results of our method only contain templates Ty, k =

2, 3,4, for fair comparisons, every T, template is further split into a T3 template
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and a single-hole template, like Figure 4.3(b). It is obvious that a conflict would
be generated by this split. Correspondingly, for our method the cost of used T}
templates, i.e., 0.01 x costy, x |T}y], is replaced by the cost of used T3 templates
and the cost of generated conflicts, i.e., (0.01 x costp, + 1)|T4|. Then COST,
of our method is calculated by COST,=|C| + T -Cost — 0.01 x costy, x |Ty| +
(0.01 x costr, + 1)|Ty| = |C| 4+ T_-Cost + 0.98|Ty|.

First, we compare the column “COST” in “ASP-DAC’16” with the column
“COST;” in “Ours”. Assuming that only 7, and T3 templates are used, we
can reduce the total cost of decomposition by 6%, and for every benchmark, we
achieve a better result. Moreover, we can reduce the total number of conflicts
by 7%. In addition, the CPU time of ASP-DAC’16 is 3.61x more than ours.
Then, we compare the column “COST” in “Ours” with the column “DRS”, our
total cost averagely is only 0.4% greater than the lower bound. Hence, the gap
between our total cost and the optimal value should be less than 0.4%. The
experimental results indicate that our method almost obtains optimal solutions
for all benchmarks. At last, a part of the experimental result for the benchmark

dpl_Vial with d. = 51nm and dgpe, = 40nm is shown as Figure 4.11.

It must be noted that the quality evaluation of a solution is significant for
an NP-hard problem which has real applications. If we know the gap between
the obtained result and the optimal value, then we know whether an instance of
the problem is solved or not. Typically, for this experiment with denser setting,
our method shows that the gap between our result and the optimal value is very
tiny, but the number of conflicts is still large. This indicates that one or more

masks might be needed for further eliminating the conflicts.

4.6 Summary

In this chapter, we consider the contact layer mask and template assignment

problem of DSA with TPL for general layout, and propose a discrete relaxation
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method. First, we introduce negative edges in the conflict grouping graph, and
weight the edges of the conflict grouping graph. Then we formulate a discrete
relaxation problem of the contact layer assignment problem of DSA with TPL.
For obtaining better results, we introduce triangle edges in the weighted con-
flict grouping graph, and thus introduce some valid inequalities in the discrete
relaxation problem. We transform the discrete relaxation solution to a legal
solution of the initial problem by addressing the template assignment problem
on the layout graph. Our discrete relaxation based method can estimate the
gap between the obtained solution and the optimal solution in the experiment,
which is meaningful for the NP-hard problem. Furthermore, our experimental
results show that the gaps between the obtained solutions and the optimal so-
lutions are very small. Specially, the discrete relaxation approach verifies the
optimality of our experimental results of sparse benchmarks since the gaps are
0. Finally, it must be remarked that we only consider the 1-D templates in this
chapter. However, the proposed method can be extended to handle more general

templates like 2 x 2, which needs further careful investigation.
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Chapter 5 Graph Based Redundant Via
Insertion and Guiding Template Assignment

for DSA-MP

5.1 Introduction

In an integrated circuit (IC) layout, a via provides the connection between
two net segments from adjacent metal layers. A single via may fail partially or
completely because of various reasons, such as random defects, cut misalignment
and electro migration or thermal stress [85,110]. A partial via failure may
induce timing problems due to the increase of contact resistance and parasitic
capacitance, while a complete via failure will produce a broken net in a circuit
[85]. These failures may heavily hinder the functionality and yield of a circuit.
Therefore, reducing yield loss due to via failure is one of the most important

problems in the IC design flow.

B via [JRVC [ |RV metal 1 metal 2

| | | |
| | :
H =g -
& ;’ R
] a1l
o

Figure 5.1: An example of redundant via insertion. (a) Four locations of redun-
dant via candidates. (b) A feasible redundant via insertion result.

A promising method for improving via yield and reliability is adding a
redundant via adjacent to every via [85,110], enabling via failure to be tolerated.
For each via, the position of a redundant via should meet two conditions: first,
the redundant via should be aligned with and be close to the via, as shown in

Figure 5.1(a), where four redundant via candidates (RVC) r are next to the via
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Figure 5.2: Four usable types of guiding templates. (a) ¢t;. (b) to. (c) t3. (d) t4.

v; second, the inserted redundant via should not cause any short circuit, i.e., it
can only be inserted at a free space not occupied by any metal wire, or at a space
occupied by only one metal wire which is on the same net as the via [20,94,97].
A via is an alive via if it has free spaces for inserting a redundant via, otherwise
it is called a dead via [85]. As shown in Figure 5.1(b), vias vy, vq, vy and vs
are alive vias, while via v3 is a dead via since it has no free space for redundant
via insertion. Some works have concerned the redundant via insertion (RVI)
problem at the routing stage [60,71], or at the post routing stage [56, 57, 61].
In order to improve yield and reliability, considering the problem is necessary
at both the during routing and the post routing. In this chapter we consider

redundant via insertion at the post routing stage.

The recent proposed block copolymer directed self-assembly (DSA) lithog-
raphy technology is considered as a promising fit for via layers in the Tnm
technology node and beyond [98,99]. Many significant improvements have been
made on manufacturing, modeling and simulation of DSA, especially on the
graphoepitaxy DSA [64,87]. The block copolymers form cylinders, and by re-
moving cylinders, the material can be used to fabricate vias. To generate ir-
regularly distributed vias using DSA, guiding templates surrounding vias are
required [34,55]. These guiding templates are manufactured by conventional
optical lithography, and thus the resolution is limited. To improve the resolu-

tion, some closed vias may be put in a multi-hole guiding template [64,90].

Theoretically, guiding templates can be of any shape. However, overlay

accuracy varies with different guiding template shapes. Empirically, a highly
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oriented and aligned via arrangement could have better overlay accuracy [70].
Hence, to guarantee a reasonable overlay accuracy, only some regular guiding
templates with few holes are used to surround vias. In this chapter, the usable
four types of guiding templates ¢y, ¢, t3 and ¢4 are shown in Figures 5.2(a)-5.2(d)
as of [70].

Usually, assigning vias to guiding templates is important in the DSA based
designs. With the feature size decreasing, the density of vias dramatically in-
creases in the via layer correspondingly, and single patterning only cannot obtain
the required resolution of a guiding template. Hence multiple patterning (MP)
lithography technologies are necessary for higher resolution [7,52,77,93]. The
guiding template assignment (GTA) for DSA-MP problem has been well inves-
tigated in recent years [7,52,77,93].

Fang et al. [39] first considered the redundant via insertion and guiding tem-
plate assignment for DSA with single patterning problem, where they introduced
two ILP formulations. In the better ILP, firstly, all redundant via candidates
are found, and then all feasible guiding templates (via patterns in [39]) for every
via or RVC are detected. Furthermore, at most one of the guiding templates
would be selected for a via or RVC. Since the better ILP in [39] considers all
RVCs for every via and all the feasible guiding templates for every via or RVC,
there are too many variables and constraints, even though some ILP reduction
techniques are introduced. In addition, they proposed a graph based method
to obtain a heuristic solution by solving the maximum independent set prob-
lem. In order to improve the insertion rate and the manufacture rate, Fang et
al. [38] introduced metal wire perturbation to the RVI and GTA for DSA-SP
problem. By perturbing some metal wires, it becomes more free for the inser-
tion of redundant vias, but in the cost of increasing the wirelength. Hung et
al. [47] introduced dummy vias for further improving the insertion rate and the
manufacture rate. By inserting some dummy via, more guiding templates can

be used for patterning vias.
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For a dense layout, it may not be easy to obtain a good enough insertion
rate and manufacture rate under single patterning, hence multiple patterning is
needed. Ou et al. [70] first investigated the redundant via insertion and guiding
template assignment for DSA with multiple patterning problem, and gave an
ILP formulation based on a constrained weighted matching with MP. Similarly,
the ILP in [70] considers all possible guiding template assignments (GTA in [70])
for every via. Consequently, the ILP has too many variables and constraints.
Apparently, it is time consuming to solve the ILP problem, hence a linear pro-
gram relaxation based approximate algorithm was proposed for fast obtaining
a relaxation solution. However, a solution obtained by randomized rounding of

the relaxation solution may be far away from an optimal solution.

Conventionally, the redundant via insertion problem and the guiding tem-
plate assignment for DSA-MP problem are considered at two separate stages. Af-
ter obtaining a redundant via insertion, the guiding template assignment is con-
sidered. There exists an apparent issue for this separate manner. That is, if the
via distribution is locally very dense, assigning vias to regular shaped DSA guid-
ing templates is very difficult without violating design rules. Hence,consideration
of the two stages simultaneously is necessary [38,39,70]. In this chapter, we fo-
cus on redundant via insertion and guiding template assignment for DSA-MP
problem, considering three scenarios: single patterning (SP), double patterning

(DP), and triple patterning (TP).

Our main contributions are summarized as follows.

e Under single patterning, we construct a new conflict graph by introducing
multiplets, and formulate the redundant via insertion and guiding template
assignment for DSA with single patterning problem as a constrained maxi-
mum weight independent set (CMWIS) problem on the conflict graph. Un-
der the assumption that a redundant via cannot be inserted if its related via
is not manufacturable, we prove that the CMWIS problem is equivalent to

the initial problem. The ILP formulation of CMWIS is based on multiplets
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instead of all possible guiding templates, whose variables and constraints

are much less than those of the existing ILPs.

e We reduce the CMWIS problem to the maximum weight independent set
problem such that it can be tackled by a fast algorithm, which can obtain
a local optimal solution. For improving the solution quality, we propose a

greedy method to obtain an initial solution for the fast algorithm.

e Under double/triple patterning, we propose a new solution flow, which is
a two-stage method. At the first stage, a contraction graph is constructed,
and the contracted vertices are assigned to 2 or 3 masks. At the second
stage, the solver for the single patterning is called to achieve redundant via

insertion and guiding template assignment for every mask.

e Experimental results show that our algorithm for the problem with sin-
gle patterning is faster than the methods in [39, 70], and our two-stage
method for the problem with double/triple patterning is much faster than
the method in [70]. Moreover, the obtained results are better than those of

the compared methods.

5.2 Preliminaries

In this section, we first describe the problem formulation handled in this

chapter, then we summarize our solution flow.
5.2.1 Problem Formulation

In this chapter, we consider the problem on the grid graph. For a via v,
the position of a redundant via candidate (RVC) of v; should satisfy one of the
following conditions: i) no via and metal wire occupy the position; ii) only one
metal wire occupies the position, and the metal wire is on the same net as via v;.

We only need insert one redundant via for a via. For high resolution and focal
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depth of guiding templates, the spacing between any two neighboring guiding

templates should not be less than the optical resolution limit spacing ds.

The problem aims at finding redundant vias for vias, and manufacturing
all vias and their redundant vias by the DSA-MP technique. The manufacture
rate (MR) and the insertion rate (IR) [39,70] are introduced to evaluate the

effectiveness of previous methods, whose definitions are described as follows.

Definition 5.2.1 (manufacture rate). The manufacture rate is the ratio of the

number of manufacturable vias to the number of vias.

Definition 5.2.2 (insertion rate). The insertion rate is the ratio of the number

of inserted redundant vias to the number of vias.

Since via manufacturability is generally the first consideration for yield, an
inserted redundant via should not cause generation of an infeasible via pattern

[39]. Hence, we make the following assumption:

Assumption 5.2.3. A redundant via cannot be inserted, if its related via is

not manufacturable.

Under Assumption 5.2.3, the redundant via insertion and guiding template
assignment for DSA with multiple patterning (RGDM) problem is formulated

as follows.

Problem 5.2.4. (RGDM). Given a post-routing layout with via/redundant
via layers, the usable guiding templates, and M masks, insert redundant vias
for vias, assign vias and inserted redundant vias to guiding templates, and as-
sign these guiding templates to M masks, such that: i) the inserted redundant
vias are legal; ii) the spacing between any two neighboring guiding templates
should not be less than the optical resolution limit spacing d;. The objective is

maximizing MR + [-IR, here [ is a weighting parameter.

Depending on the number of masks, i.e., the value of M, the RGDM prob-
lem has different versions, such as single patterning (RGDS), double patterning
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Figure 5.3: Example for the RGDS and the RGDM problems. (a) A layout with
a via layer and two metal layers. (b) A result of the RGDS problem. (c) A
result of the RGDD problem.

(RGDD), and triple patterning (RGDT) problems. Figure 5.3 gives an exam-
ple of the RGDS and the RGDM problems. It must be remarked that all the
three problems are NP-hard, since they contain the maximum independent set

problem as a special case [57], which is also NP-hard.

5.2.2 Solution Flow

Our solution flow for the RGDM problem is depicted in Figure 5.4. There
are three parts in the flow, i.e., preprocessing, the RGDS solver, and the RGDD/RGDT
solver.

In the preprocessing, firstly, we find all redundant via candidates for every
via. Based on these vias and redundant via candidates, we construct some
multiplets. Then we consider every multiplet as a vertex, and construct a
conflict graph CG(V, E) on the grid model. Detailed definitions are described in

Section 5.3. Based on the conflict graph, we propose a fast assignment algorithm
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ILP Solver

Input Layout

Find All Redundant Via
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Conflict Graph
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Fast Assignment for
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Solution of MMC Problem

Solving RGDS on Every Mask

Output Layout Legalization

Figure 5.4: Our flow of graph based method.

for fast obtaining an optimal assignment of some vias to some guiding templates.

After that, we obtain a number of connected components of the conflict graph.

For the RGDS problem on every connected component, we formulate it as a
constrained maximum weight independent set problem which is an ILP. We have
two approaches to solve the problem: i) use an ILP solver to obtain an optimal
solution; ii) use an MWIS solver to obtain a good-enough solution, which is a
very fast algorithm.

For the RGDD/RGDT problems, we propose a two-stage method. At the
first stage, we construct a contraction graph CoG(C, E¢,WW¢), and the max-M-
cut problems are formulated for obtaining the mask assignment results. At the
second stage, we call our RGDS solver to obtain a redundant via insertion and

guiding template assignment for every mask.

5.3 Conflict Graph Construction on Grid

In this section, firstly, we find all redundant via candidates (RVC) for every

via. Then we introduce some multiplets based on these RVCs. At last, we
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Figure 5.5: All redundant via candidates of the layout in Figure 5.3(a).

construct a conflict graph, in which vertices are multiplets.

According to the introduction of RVC in Section 5.2.1, we can easily find
all RVCs in time O(n), where n is the number of vias. All RVCs of the layout
in Figure 5.3(a) are presented in Figure 5.5. For example, r4 in Figure 5.5 is
the RVC of via vy, here the index “d” denotes that ri4 is under v;. Moreover,
we use the indices “u”, “I” and “r” to denote that an RVC is on the top, left

and right of a via, respectively.

According to Assumption 5.2.3 in Section 5.2.1, we make following assump-

tion as in [70]:

Assumption 5.3.1. A via and its redundant via (if existing) should be assigned

to the same guiding template.

After finding all RVCs for every via, we construct a conflict graph for the via
layer layout. Suppose that the RVCs of via v; are ry,, 74, 74 and r;.. We group
every RVC with v;, and denote it as doublet. Then we have four doublets: {v;,
Tiut, {0i, mia}t, {vi, ra}t and {v;, 7. }. Via v; is called a single. The four doublets
and the single {v;} denote the five possible cases of inserting a redundant via
for v;. If doublet {v;, r;,} is chosen, then 7, is inserted on the upper side of
v;; if single {v;} is chosen, then v; does not have any redundant via insertion.
The RVCs, the doublets and the single of vy in Figure 5.5 are shown in Figure
5.6(a). In addition, we introduce another type of doublet, which is composed of

two close and aligned vias. As shown in Figure 5.6(b), the doublet is composed
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Figure 5.6: (a) The S; and D;s of via vy. (b) Ds.

of vias v; and vy. Let D; denote the doublet composed of a via and a redundant
via, let Dy denote the doublet composed of two vias, and let S; denote the single.

Every one of these doublets and single is called collectively a multiplet.

We regard the above every multiplet as a vertex in the conflict graph. Based

on these vertices, we introduce some edges between them.

Definition 5.3.2 (overlap edge). If multiplets i and j are overlapped with each
other, then there exists an overlap edge e;; between them. Let Ep be the set of

overlap edges.

Definition 5.3.3 (conflict edge). If the distance between two multiplets i and j
is within the optical resolution limit spacing, and there does not exist an overlap
edge between them, then there exists a conflict edge e;; between ¢ and j. Let

E¢ be the set of conflict edges.

According to Assumptions 5.2.3 and 5.3.1, we have some observations: i) a
guiding template may include vias only, but it may not include only redundant
vias; ii) the number of redundant vias in a guiding template must not be larger
than the number of vias in the guiding template; iii) for every redundant via in
a guiding template, its via must also be in the same guiding template. Then the
usable guiding template types in Figure 5.2 are of the following combinations: A
t; includes a via, i.e., an Si; A t5 includes a via and a redundant via, i.e., a Dy,
or includes two vias, i.e., a Do; A t3 includes two vias and a redundant via, i.e., a
D, and an Sp, or includes three vias, i.e., a Dy and an Sy; A t4 includes two vias

and two redundant vias, i.e., two Dss, or includes three vias and a redundant
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Figure 5.7: All possible combinations of multiplets to form four guiding template
types.

via, i.e., a Dy and a D, or it includes four vias, i.e., two Dys. All possible
combinations of multiplets are shown in Figure 5.7. It must be remarked that,
although we only consider the above four guiding template types, combinations

of multiplets to form other guiding template shapes still can be figured out.

Definition 5.3.4 (template edge). For two multiplets i and j, suppose that
at least one of them is not S;. If ¢ and j can be assigned to the same guiding
template without any design rule violation, and between ¢ and j there exists a
conflict edge e;; € E¢, then e;; is also called a template edge. Let Er be the set
of template edges. Obviously, £ C E¢.

Definition 5.3.5 (conflict graph). The conflict graph is an undirected graph
CG(V, E), where vertex v € V denotes a multiplet, e;; € E is an edge and
E = (Ec — Er)U Ep. E¢, Er and Ep are the sets of conflict edges, template

edges and overlap edges, respectively.

The conflict graph of vias vy, va, v3 and vy of the layout in Figure 5.3(a)
is constructed as shown in Figure 5.8 (for clearness, we omit the conflict graph
of other vias in Figure 5.3(a)). In Figure 5.8, nodes a, ¢, g and [ are S;, and
nodes b, d, e, h, i, j and k are D; and node f is Dy. The red lines are the
conflict edges, the black edges are the overlap edges, and the green dotted edges
are the template edges. The multiplets corresponding to vertices a, b, ¢, d and
f are shown in the box. In Figure 5.8, vertices a and b are overlapped with each
other at vy, thus there is an overlap edge between them. The distance between

vertices b and c is within the optical resolution limit spacing (one grid), thus a
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Figure 5.8: The conflict graph C'G for vias vy, vy, v3 and vy of the layout in
Figure 5.3(a).

V24 V24 o

Figure 5.9: The graph constructed based on GTA for vias v; and v, of the layout
in Figure 5.3(a).

conflict edge is generated between them. Since vertices b and d can be assigned
to a quadruple guiding template as in Figure 5.3(b), there is a template edge
between b and d.

It must be remarked that introducing multiplets may reduce the size of a
conflict graph. In the previous works [39,70], the constructed graphs are based
on all the possible guiding template assignments (GTA) instead of multiplets.
In a layout, the number of GTAs is greater than the number of multiplets, so
do the sizes of the corresponding graphs. For example, all the possible GTAs of
vias v; and vy in Figure 5.3(a) are shown in Figure 5.9(a), while the graph based
on these GTAs is shown in Figure 5.9(b). Comparing with the partial conflict
graph in the box of Figure 5.8, the graph in Figure 5.9(b) is more dense.

Before solving the RGDM problem, we introduce a fast guiding template
assignment and redundant via insertion for some vias. On the conflict graph
CG(V, E), if a vertex is Dy, and there is no conflict edge incident to it, then the

via and the redundant via in the D; are assigned to a guiding template, and
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the adjacent vertices of the vertex connected by overlap edges are removed from
the conflict graph. After that, we calculate the connected components, and the

RGDM problem is considered on the connected components one by one.

5.4 Algorithms for RGDS Problem

In this section, we describe the technical details of solving the guiding tem-
plate assignment and redundant via insertion for DSA with single patterning
(RGDS) problem. First we formulate the RGDS problem as a constrained max-
imum weight independent set (CMWIS) problem, and give the corresponding
ILP formulation. Then we prove the equivalence between the RGDS problem
and the CMWIS problem, through which the RGDS problem can be solved by
ILP solver. In addition, for fast solving the CMWIS problem, we introduce a
fast algorithm for the maximum weight independent set problem, and reduce

the CMWIS problem to the problem.
5.4.1 Constrained Maximum Weight Independent Set Problem

According to the conflict graph of the RGDS problem, we construct the
CMWIS problem. For the multiplets overlapped with each other, we can only
choose one of them for patterning. Thus, in the conflict graph, if between two
multiplets i and j there is an e;; € Ep, then only one of the multiplets can
be chosen. Furthermore, for the RGDS problem, only a mask can be used for
guiding templates. Thus, if two multiplets are within the optical resolution limit
spacing, then only one of them can be patterned, unless the two multiplets are
assigned to the same guiding template. That is, if between the multiplets i and
j there exists e;; € E¢ but e;; ¢ Er, then only one of them can be chosen.

Hence, the RGDS problem is similar to the independent set problem.

In addition, the vertex set V of the conflict graph C'G is composed of
multiplets. A Dq includes a via and a redundant via, a D includes two vias, and

an 57 only includes a via. The objective of the RGDS problem is maximizing the
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weighted sum of MR and IR, i.e., maximizing the weighted sum of the number
of manufacturable vias and the number of inserted redundant vias. We jointly

consider MR and IR by assigning weight to every vertex as

1443, ifiisa Dy;
w; = § 2, if i is a Do; (5.1)
1, if 7 is an S7;
where w; is the weight of vertex i,  is a parameter which is used to balance MR

and IR, and is set as 0.5 in this chapter. Let W be the set of weights, then the
conflict graph CG(V, E) is weighted and is written as CG(V, E, W).

Then, we formulate the RGDS problem as the maximum weight indepen-

dent set (MWIS) problem

max Z WX (5.2)

i€V
s.t. i+, <1, Ve;; € E; (5.2a)
z; € {0,1}, Vie V. (5.2b)

In the problem, Constraint (5.2a) means that, if between vertices ¢ and j there
exists e;; € Fop or e;; € Ec — Ep, then at most one of them can be patterned,
e, r;=1,2; =0,orx; =0, 2z; =1,0orz; =0, z; = 0.

It must be remarked that the MWIS problem is not equivalent to the RGDS
problem. Some special structures in a layout make the equivalence not hold.
These structures have a feature that, every two of several close multiplets can
be assigned to a same guiding template, but all of these multiplets cannot be
included in a same guiding template. We present two examples in Figure 5.10.
In Figure 5.10(a), ¢, j and k are three multiplets which are Dy, e;; and ejj, are

template edges, and there is no edge between ¢ and k. For this structure, ¢ and

144



A5 o Pt 1) 36 BE T R XA =) 20 A T I

j can be assigned to a t4 guiding template, and so does j and k, but all of 7, j
and k£ cannot be assigned to a same guiding template. However, by solving the
MWIS problem on the structure in Figure 5.10(a), we get an optimal solution z;
=1, z; = 1 and z;, = 1, which means 7, j and k can be patterned simultaneously.
However, one of the three multiplets cannot be patterned since this is the RGDS
problem and all of the three multiplets cannot be assigned to the same guiding

template. For the structure in Figure 5.10(b), this situation still holds.

We call the structures in Figure 5.10 as incompatibility structure (INC),

which can be defined as follows.

Definition 5.4.1 (INC). For the RGDS problem, the incompatibility structure
is a structure composed of three multiplets i, j and k, in which e;; and e;;, are

template edges and there does not exist any edge between ¢ and k.

It must be noted that, the definition of INC only includes three multiplets,
since any one of the four usable guiding templates includes at most two multiplets,
as shown in Figure 5.7. If there exists other shape of guiding template, we still

can define a corresponding INC.

In order to exclude the solutions of the MWIS problem which are infeasible
for the RGDS problem due to INC, we add the following constraint to the MWIS

problem:

v+ +xp <2 if 7, j and k compose an INC. (5.3)

Then we call the new problem as a constrained maximum weight independent

set (CMWIS) problem.

Now we show the relationship between the CMWIS problem and the RGDS
problem. Before that, we show the relationship between Assumptions 5.2.3 and

5.3.1 for the RGDS problem.

Lemma 5.4.2. Under Assumption 5.2.3, Assumption 5.3.1 holds.

145



TN e VATS'S

5y

i
(a) (b)

Figure 5.10: Two kinds of incompatibility structures.

Proof. Under Assumption 5.2.3, suppose Assumption 5.3.1 does not hold. Then
an inserted redundant via is not in the same guiding template as its via. Obvi-
ously, there exists a conflict edge between the via and its redundant via due to
the spacing rule. However, for the RGDS problem, only a mask can be used to
pattern guiding templates. Thus the via cannot be patterned, which contradicts

Assumption 5.2.3. Hence Assumption 5.3.1 holds. ]

Theorem 5.4.3. The CMWIS problem is equivalent to the RGDS problem.

Correctness of Theorem 5.4.3 is explained as follows. In the CMWIS prob-
lem, all possible redundant via candidates and guiding template assignments
(under Assumption 5.2.3) are considered. After obtaining a solution of the
CMWIS problem, we only need to assign the vertices with x; = 1 and connect-
ed by template edges to a guiding template, and then we obtain a solution of
the RGDS problem. Since forced by Constraints (5.2a) and (5.3), the obtained
guiding template assignments must be legal. Furthermore, the objective of the
RGDS problem is maximizing MR + (-IR, which is equivalent to maximizing
Ny + B - Ny, here Ny is the number of patterned vias, N; is the number
of inserted redundant vias. According to the definition of multiplets and the
weighting rule of multiplet, we have ), _,, w;x; = Ny + (- Ny

Comparing with the via layer layout, the conflict graph of the CMWIS
problem has much more vertices, and has too many edges introduced for con-
straints. Hence solving the CMWIS problem on a large dense graph is time
consuming. However, after fast assignment of some vias to some guiding tem-

plates, the conflict graph is divided into a number of connected components.
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Thus, it is possible to solve the CMWIS problem by ILP solver.

5.4.2 A Fast Algorithm for the MWIS Problem

To solve the CMWIS problem faster, we introduce a fast algorithm for
the maximum weight independent set (MWIS) problem. Then, we reduce the
CMWIS problem to the MWIS problem in the next subsection. Many fast
algorithms have been proposed to fast obtain good-enough solutions [15, 58] of
the MWIS problem. Among them, we introduce the fast algorithm in [15] and

improve it for our usage.

The MWIS problem can be reformulated as an integer quadratic program.
Detailed derivation is as follows. The ILP formulation (5.2) of the MWIS prob-

lem is equivalent to

max wTx (5.4)

s.t. zix; =0, Ve;; € E; (5.4a)

x; € {0,1}, VieV, (5.4b)

where w = (wq,wsq, - ,w,)T € R", x = (21,29, - ,2,)7T € {0,1}", n = |V].

Let A = (A;;) be the adjacency matrix with A;; = 1ife;; € E and A;; = 0 if
e;j ¢ E. Then the IP formulation (5.4) can be rewritten as

max wTx (5.5)
s.t. xTAx = 0; (5.5a)
z; € {0,1}, Vie V. (5.5b)

Putting Constraint (5.5a) into the objective function, we get
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1
max f(x)=wTx — éaxTAX (5.6)

s.t. z; € {0,1}, VieV, (5.6a)

where a > 0 is a regularization parameter. Since the adjacency matrix A may

not be positive semi-definite, f(x) may not be a concave function.

Let x, x* € {0,1}" be a candidate solution and a solution of Problem (5.6),
respectively, let y € [0,1]™ be a point in the continuous domain. Based on
Problem (5.6), the Algorithm 2 in [15] works as follows. It visits a sequence of
continuous points {y®} in iterations ¢ = 0,1,2,---, where y® € [0,1]", and
finds discrete candidate solutions x*) in the respective neighborhoods of y®,

until convergence. Let h(y,y®) be the first-order Taylor series approximation

of f(y) at y®, i.e.,

Wy, y?) = fiy) + (y — y)T(w — aAy®) (5.7)

= yT(w — aAy®) + constant,

where ‘constant’ does not depend on y. The approximation h(y,y®) is linear
in y. Hence, if o is large enough, we can easily obtain a discrete maximizer x®)

= argmaxye{()’l}nh(y,y(t)) by assigning

1, if (w— Osz(t))Z- > 0;
20 = (5.8)
0, otherwise.

Then y® is mainly updated by a linear interpolation of y and x®, i.e.,
yD = y® 4 n(x® —y®) where 7 is an interpolation parameter with € [0, 1]
and satisfying df (y**1))/dn > 0. This ensures that the sequence {f(y®)} is

non-deceasing. Brendel et al. [15] provided a closed-form solution of 1 as
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— YT (x® — (1)
nzmin{max{ (w—ady JI(x y) 0},1}, (5.9)

a(x0 — yOTA KD — yO)’

and proved that the sequence {y®} converges to a local optimal solution of

Problem (5.2).

However, from Eq. (5.8), we can see that the solution quality of x(*) is highly
dependent on y(@. If we choose a bad y(®, then the obtained local optimal value
f(x*) may be far away from the global optimal value. Hence, in order to obtain

a better solution, we must have a good initial solution x for this algorithm.

Algorithm 5.1 Initial solution generation

Input: A connected component of CG(V, E, W);
Output: Initial solution x(© of the MWIS problem;
1: repeat

2:  Compute wg(k) by Equation (5.10), Yk € V;
3 :E'Z(O) 1, where ¢ = argmin, ., wy(k);

4:  for every j in V with e;; € F' do

5: #9 0,and V - V — {j};

6: end for

7 VV-— {Z},

8 until V =0

We propose a greedy based algorithm to obtain a good enough initial solu-
tion X in Algorithm 5.1. In line 2 of the algorithm, the selection weight w;(k)
is computed by

d.(k) — di(k), if kis Dy;
wy(k) = (5.10)

N +d.(k) — di(k), otherwise,
where d.(k) is the number of conflict edges incident to vertex k, di(k) is the
number of template edges incident to vertex k. The selection weight wg(k)
is used to evaluate the degree of conflict of vertex k. N is a number larger

than all d. (N is set to 50). This setting indicates that we prior select Dis
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to other multiplets. Since the maximal degree of vertices is a constant for the
conflict graph, the runtime complexity of Algorithm 5.1 is O(|V|). For the
MWIS problem, we improve the algorithm in [15] as outlined in Algorithm 5.2.

Algorithm 5.2 The MWIS algorithm

Input: A connected component of CG(V, E, W), convergence threshold §, and
o 2.
Output: Solution x* of the MWIS problem.
1: Initialize ¢ < 0, and y(© € [0,1]", y© # 0;
2: Generate x(*) by Algorithm 5.1, and x* «+ x(©;
3: repeat
if f(x®) > f(y®) then
y(t+1) 0.
else
Obtain n by Equation (5.9);
y(t+1) — y(t) + n(&(t) — y(t));
end if
10:  Obtain X+ by Equation (5.8);
11:if f(x*D) > f(x*) then

>

12: x* — x(tHD).
13:  end if
14:  t<+t+1;

15: until [|y®t) — y®|| < 4;

16: Ve {izar=1,i=1,2,--- ,n};

17: repeat

18:  xj <« 1, where iy = argmax; 1 w;;
19:  for every j in V! with e;;, € F do
20: 25 0, and V!« V! — {j};

21:  end for

22: VI« VI—{ig};

23: until V1 =0

Lines 16-23 in Algorithm 5.2 are used to obtain the final feasible solution
x* of the MWIS problem. Algorithm 5.2 is very fast. The iteration between
lines 3-15 converges in only a few number of iterations, and the complexity per
iteration is only O(|E|) [15]. Moreover, according to our experiments, it even can
obtain optimal solutions of the RGDS problem on many connected components.
Especially, Algorithm 5.1 is also very effective, since it may also obtain optimal

solution of the RGDS problem on many connected components. Figure 5.11
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x=1 x=1

Figure 5.11: An optimal solution of the MWIS problem on the conflict graph in
Figure 5.8.

shows an optimal solution of the RGDS problem on the conflict graph shown
in Figure 5.8, which is obtained by Algorithm 5.1. The corresponding result is
shown in Figure 5.3(b).

5.4.3 Reduction of CMWIS to MWIS

According to the analyses in Section 5.4.1, the CMWIS problem is composed
of the MWIS problem and Constraint (5.3). According to our statistics, most
of the connected components obtained after the fast assignment for some vias
stage do not have incompatibility structure. Hence Constraint (5.3) is not active
on these connected components, and we only need to solve the MWIS problem
using Algorithm 5.2 instead of solving the CMWIS problem. However, for the
connected components with incompatibility structure, Algorithm 5.2 cannot be
directly used. On these connected components, we reduce the CMWIS problem
to the MWIS problem by restricting Constraint (5.3) to Constraint (5.2a), which
is by deleting a template edge in every INC from the conflict graph C'G. If a
template edge e;; of an INC is deleted, then it appears in E as a conflict edge
due to F = E¢ — Ep, and i and j should satisfy Constraint (5.2a). Consequent-
ly, combining Constraint (5.2a) and the other vertex in the INC implies that
Constraint (5.3) holds. Naturally, we use the following two template edge dele-
tion criteria: first, we delete template edges as few as possible; second, we prior
delete those template edges which connect two multiplets with low-probability
being assigned to the same guiding template. The incompatibility structure

eliminating algorithm is outlined in Algorithm 5.3.
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Algorithm 5.3 Incompatibility structure elimination

Input: A connected component (CC_CG) of CG with INC;
Output: A CC_CG of CG without INC;

1: Construct the incompatibility graph IG of CC_CG;

2: Find all connected components (CC_IGs) of IG;

3: for every CC_IG do

4:  Extract all multiplets in CC_IG,

5. Construct the template graph T'G;

6:  Solve maximum weight matching on T'G;

7 Mark all un-matched template edges, and delete them from C'C_CG;
8: end for

Definition 5.4.4 (incompatibility graph, IG). The incompatibility graph IG(I, Ey)
is an undirected graph , where node I; € I is an INC. An incompatibility edge

e;j € Er exists between INCs I; and [; if they share a template edge in the
conflict graph C'G.

Definition 5.4.5 (template graph, TG). The template graph TG(T, Er, Wr)
is an induced subgraph of conflict graph C'G by template edges, where node
T; € T is a multiplet in an INC. An edge e;; € Er exists between nodes T; and
T; if e;; € Er in CG. wfj € W7 is the weight of template edge e;;, which is set
as Equation (5.11).

For line 1 of Algorithm 5.3, the detailed definition of incompatibility graph
IG is described in Definition 5.4.4. An example for a connected componen-
t CC_IG of IG is shown in Figure 5.12(b), which is composed of two INCs
I;(i, j, k) and 1;(j, k, 1), where I; is composed of multiplets i, j and k, and I;
is composed of multiplets j, k and [. Template edge ez.k is in both of I; and I;.
Thus there is an incompatibility edge between I; and /;, and I; and [; are in the
same connected component of I/G. In line 5 of Algorithm 5.3, template graph
TG is defined as in Definition 5.4.5, and the template graph of Figure 5.12(b)
is shown in Figure 5.12(c). It must be noted that, in a T'G the degree of every
multiplet is 1 or 2 (at least two multiplets are with degree 1). The detailed

explanation is stated as follows. The three multiplets in every INC should be
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Figure 5.12: (a) A CG with seven multiplets. (b) An IG with two INCs
I;(i, j, k) and I;(j, k, 1). (c) A TG and its maximum weight matching re-
sult.

in a line, and any two connected INCs in a connected component of IG should
share a template edge. As a result, all multiplets in the T'G constructed by line
5 in Algorithm 5.3 are in a line. Thus the T'G is a bipartite graph.

In line 5 of Algorithm 5.3, the weight of a template edge eﬁj is set as

wh = ———— (5.11)

where nﬁfj is the number of multiplets which satisfies that: i) these multiplets
are connected to i but not to j by conflict edges in the conflict graph CGj ii)
if several multiplets satisfy i), but they are connected to each other by over-

lap edges in the conflict graph C'G, then these multiplets are counted as one

t
j—1
less than 1. wf; in Equation (5.11) is used to reflect the similarity of connected

multiplet. n}_,; has the similar meaning, and at least one of n;_; and n}_; are not
multiplets. If ¢ and j share more connected multiplets, then the value of wfj
is larger. And in this case, multiplets ¢ and j are more likely assigned to the
same guiding template. In Figure 5.12(a), multiplets i, a and b are connected
to 7 but not to k by conflict edges, and multiplets a and b are connected to each
other by an overlap edge, hence nz-_k = 2. Correspondingly, the weights of all
template edges are calculated by (5.11) as shown in Figure 5.12(c).

In order to obtain the best template edge deletion, we obtain the maximum
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weight matching on T'G by solving a maximum flow problem. Generally, the
runtime complexity of solving a maximum flow problem is O(|V[?). Since the
degrees of vertices in TG are 1 or 2 and the capacity of every edge in T'G is
1, our T'G is a unit capacity simple network. Thus, solving the maximum flow
problem on our TG can be finished in O(|T|2 - |E7|). In addition, since the size
of a T'G is very small, we can fast obtain a maximum weight matching result,
and further delete those un-matched template edges from the conflict graph C'G.
For example, for the TG in Figure 5.12(c), we can obtain a maximum weight
matching (i, j) and (k, [), and then we delete the un-matched template edge (7,
k) from the conflict graph. Thus the two INCs are eliminated.

5.5 Algorithms for RGDD/RGDT Problems

In this section, we consider redundant via insertion and guiding template as-
signment for DSA with double patterning (RGDD) or triple patterning (RGDT).
The RGDD and the RGDT problems can also be formulated as ILPs, and then
may be solved by ILP solver. However, the work in [70] indicates that, the ILP
formulations have too many variables and constraints and are very hard to solve,

especially on large and dense layouts.

We solve the RGDD and the RGDT problems in two stages. At the first
stage, vias are assigned to M masks, such that the vias in every mask can be
easily inserted redundant vias and patterned. At the second stage, the RGDS
problem is called to assign vias and inserted redundant vias to templates for

every mask.
5.5.1 Mask Assignment for RGDD/RGDT

At the first stage of our two stage assignment method, we assign the vias
on via layer to M masks, such that the vias in every mask can be easily inserted
redundant vias and patterned. In order to achieve the assignment, we construct

a contraction graph CoG(C, E¢, W*°).
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Figure 5.13: (a) Process of contraction graph construction. (b) Contraction
graph of the conflict graph in Figure 5.8. (c¢) Result of the max-2-cut problem
on the contraction graph in (b).

Definition 5.5.1 (contraction graph). The contraction graph is an undirected
graph CoG(C, E¢,W*¢), where node C; € C'is composed of all S; and D;s of via
i. A contraction edge ej; € E° exists between nodes C; and Cj if there exists
a pair of multiplets p and ¢ € V' of CG with e,, € E¢, where p is an S; or a
Dy in node €y, and ¢ is an 51 or a Dy in node C;. Wi € W€ is the weight of

contraction edge ef;.

The weight W € W€ of the contraction edge ef; indicates the degree of
conflict between C; and Cj, which is calculated by

1
S — (5.12)
Wi; — Wi; +0.01
where
W@'j - Z @pq, (513)
peC,qeC;
W= Y (5.14)
peCi,qeC;
epe€EC
and
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2+ 203, if both of p and ¢ are Dq;
Wy =4 2+ B, if one of p and ¢ is Dx; (5.15)
2, if both of p and ¢ are 5;.

In (5.13), wy, = w, + w, is the weight sum of multiplets (vertices) p and ¢
in CG. W,; is the weight sum of all pairs of multiples p and ¢ in C; and C},
respectively. fWJij is the weight sum of multiplets p € C; and ¢ € C; between
which there exists a conflict edge ep,,. Furthermore, Wij — /V[Zj can be seen as the
degree of freedom between C; and Cj. The weight W of the contraction edge
ef; is calculated by Eq. (5.12), which indicates the degree of conflict between C;

and C;, where 0.01 in the denominator is used to avoid the denominator being

0.

The contraction graph CoG of the layout in Figure 5.3(a) is constructed
in Figure 5.13(b) based on the conflict graph in Figure 5.8, where the bold
red lines are contraction edges. Detailed process of contraction is illustrated in
Figure 5.13(a), where every cloud is a node. When £ is set as 0.5, the weights are
calculated as in Figure 5.13(b). In Figure 5.13(b), Wi, = 0.0338 is the degree of
conflict between nodes Cy and Cy, which is smaller than the other edge weights.
This shows that we still can insert easily redundant vias and pattern vias for
vias v4 and vg, even though they are assigned to the same mask. While W, =
100 is the degree of conflict between Cs and Cg, which is much larger than the
others. In fact, if nodes Cs and Cg are assigned to the same mask, then at least

one of vias vg and vg cannot be patterned, due to conflicts.

After constructing the contraction graph CoG(C, E¢, W¢), we perform the
first stage for the RGDD and RGDT problems. That is, the nodes in C'oG are
assigned to M masks (M = 2 or 3), which is a max-M-cut (MMC) problem on
CoG. The MMC problem is also an NP-hard problem. Fortunately, the number
of nodes and the number of edges in C'oG' are much less than those of the conflict

graph C'G. Hence, solving the MMC problem on the contraction graph by ILP
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solver is possible. Before that, some graph reduction techniques are used for
speeding up the solution methods.
In this chapter, we utilize three graph reduction techniques, which can keep

optimality of the MMC problem:

e Vertex with degree less than M removal;

e Bridge edge removal;

e Connected component calculation.

All the three techniques have been widely used to reduce the size of a graph for
a series of partition problems [36,53,105]. Here, we skip the details.

For the RGDD and RGDT problems, the corresponding max-2-cut problem
and max-3-cut problem on CoG(C, E¢,WW¢) are presented in ILP formulations.
In the previous works [6,40,49], various ILP formulations for the MMC problem
have been formulated. In this chapter, the max-2-cut problem for RGDD is

formulated as

Irzlicn Z Wiiey (5.16)
’ es, €E°

s.t. zi+2; > 1 — ¢y, Vei; € B (5.16a)

zi+ 25 < 1+¢y, Vei; € B (5.16b)

zi,ci; €4{0,1}, vC; e C. (5.16¢)

The max-3-cut problem for RGDT is formulated as
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min > Wiey (5.17)
’ e, €E°

s.t. 215 + 295 > 1, vC; € C; (5.17a)

Zo;i — 215 + 225 — 215 < 1+ ¢4, Vei; € E; (5.17b)

21 — 2o + 215 — 225 < 14 ¢y, Vei; € EY; (5.17¢)

215 4 2o + 215 + 225 < 3+ ¢, Vej; € B (5.17d)

214, 2215 Cij € {0, 1}, vC; e C. (5.17e)

Since the size of every connected component of the contraction graph is
not large, we directly use ILP solver to solve Problems (5.16) and (5.17). A
max-2-cut result of the contraction graph in Figure 5.13(b) is shown in Figure

5.13(c). The objective value is 0.0338 + 0.0338 = 0.0676.
5.5.2 Solving the RGDS Problem on Every Mask and Legalization

In this subsection, we explain the second stage for the RGDD and the
RGDT problems. After assigning nodes to M masks (M = 2 or 3), we need to
consider the RGDS problem on every mask. First, we reconstruct the conflict
graph CGy(Vi, Ey) for every mask k = 1,2,--- , M. Then we solve the RGDS
problem on every CGy(Vj, Ey) using the methods in Section 5.4.2. Here, the
MWIS solver is chosen as the RGDS solver.

Since our two stage method deals with guiding template assignment and
redundant via insertion on masks one by one, it may cause some illegal redundant
via insertions. For example, for vertices g and h in Figure 5.13(a), if we deal
with node Cys by the RGDS solver, we may have z, = 1, and when we deal with
node Cy, we may also have z;, = 1. But there is an overlap edge between g and
h due to the overlap between multiplets g and h, which indicates that only one
of g and h can be patterned. In order to handle this issue, we propose a trick

as follows.
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After guiding template assignment and redundant via insertion on a mask,
the corresponding positions of vias and inserted redundant vias are marked as
occupied. Then we re-find all possible redundant via candidates on the remain-
ing unoccupied positions for the other masks, and reconstruct conflict graphs,

respectively.

It must be remarked that, for the RGDD and RGDT problems, Lemma
5.4.2 does not hold. That means a via and its redundant via (if existing) may
be assigned to different guiding templates. Under Assumption 5.3.1, we may
miss the optimal guiding template assignments for the RGDD and RGDT prob-
lems. Actually, the proposed method can be extended to considering the s-
cenario without Assumption 5.3.1 by introducing some extra multiplets. But,
such consideration would greatly increase the size of solution space, and such
consideration cannot always bring improvement on solution quality. Hence, we
still consider the RGDD and the RGDT problems under Assumption 5.3.1 by
using the methods in Section 5.3. In addition, our two stage method also may
lose the optimal solution. Fortunately, for the RGDD and the RGDT problems,
after assigning all vias to M masks, the layout in every mask is sparse, and the
guiding template assignment under Assumption 5.3.1 may be good enough. Our

experimental results verify this statement.

5.6 Experimental Results

Our methods for guiding template assignment and redundant via insertion
for DSA-MP were programmed in C++ and run on a personal computer with
2.7GHz CPU, 8GB memory and the Unix operating system. We tested our
methods on the benchmarks based on the OpenSPARC T1 design [5], provided
by Ou et al. [70], and on the MCNC benchmarks and the industry Faraday
benchmarks, provided by Fang et al. [39]. Since the usable guiding templates

in [70] and [39] are different, we designed two different experiments for fair
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comparisons. In both experiments, the Branch-and-Bound solver in the software

package CPLEX [2] was chosen as our ILP solver.
5.6.1 First Experiment

We implemented our methods for the redundant via insertion and guiding
template assignment for DSA with single patterning (RGDS), double pattern-
ing (RGDD), and triple patterning (RGDT) problems on the OpenSPARC T1
benchmarks to compare with the methods in [70]'. As [70], layouts of all bench-
marks were transformed to grid models. The grid size was set to one metal pitch.
The distance between a via and its redundant via was set to one metal pitch,
and the optical resolution limit spacing d, of adjacent guiding templates was set
to two metal pitches. The available guiding template types were tq, to, t3 and
t4 as in Figure 5.2. The experimental results of RGDS, RGDD and RGDT are
listed in Tables 5.1, 5.2 and 5.3, respectively, where the last two rows of every
table are the average results and the ratios based on some corresponding average

results.

In Table 5.1, four solvers for the RGDS problem are compared. The data
in the column “SP_ILP [70]” are the results cited directly from [70]. The col-
umn “Our_ILP” lists our results, which were obtained by solving the ILP of the
CMWIS problem using ILP solver. The results in “Our_-MWIS” were obtained
by using Algorithm 5.2 in Section 5.4.2. From Table 5.1, we can see that the
results obtained by our ILP are slightly better than by the ILP in [70]. The
difference is mainly generated by more redundant via candidates in our exper-
iments. For fair, we add another comparison by testing the ILP formulation
in [70] on our redundant via candidates, and list the obtained results into the

column “Imp_ILP [70]”.

In Table 5.1, “#V” is the number of the original vias, and “CPU(s)” is the

runtime in seconds. “MR(%)” and “IR(%)” are respectively the manufacture

!The results of [70] are directly cited for comparisons. Their platform was a computer with
Core i7 3.4GHz CPU and 32GB memory, and CBC was used as the ILP and LP solver.
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rate and the redundant via insertion rate, which are calculated by

#MV #RV
MR = —— x 100 IR =
ny x 100%, my

where #MV is the number of manufactured vias (excluding redundant vias),

x 100%,

#RV is the number of inserted redundant vias. MR and IR are primary indica-
tors for comparison. And /3 in Subsection 5.4.1 was set to 0.5 for our algorithms?

for balancing MR and IR.

Compared with the ILP formulation in [70], our ILP formulation can be
solved faster and can obtain better results. From the row “Ratio” in Table
5.1, it can be seen that the improvements of “Our_ILP” over “SP_ILP [70]”
on the average MR and IR are 5% and 1%, respectively. And the average
runtime of “SP_ILP [70]” is 1.55x more than that of “Our ILP”. Although
both of the results in columns “Our_ILP” and “Imp_ILP [70]” are almost equal,
the average runtime of “Imp_ILP [70]” is 2.38x more than that of “Our_ILP”.
These comparisons show that our ILP formulation is better than that in [70] for
the RGDS problem. Furthermore, comparing “Our_MWIS” with “Our_ILP”, it
can be found that “Our-ILP” achieves a little better average MR and IR (the
improvements are 1% and 1% respectively) than those of “Our-MWIS”, but
the average runtime is about 7x more than that of “Our MWIS”. This shows
our MWIS algorithm is fast and effective. Actually, for most of the connected

components, our MWIS solver also can achieve the optimal result.

Table 5.2 lists the comparison results of two solvers on the RGDD problem.
“DP_AP [70]” is the approximation algorithm proposed by Ou et al. in [70].
“Our_DP” is our two stage method for the RGDD problem. “DP_AP [70]”
is a linear program relaxation based method, which is much faster than ILP
based method. Both of “Our_DP” and “DP_AP [70]” achieve almost the same

performance. However, the average runtime of “DP_AP [70]” is 5.79x more

2In [70], B was set to 250, while in [39], 3 was set to a value much less than 1.
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Table 5.1: Comparison with the ISPD 2016 work on the RGDS problem

o SP_ILP [70] Imp_ILP [70] Our_ MWIS Our_ILP
Circuits #V
MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s)
efc 4983  76.33  75.15 0.85 80.59  76.09 2.36 80.35 75.49  0.18 80.75  76.28 1.33
ecc 5523 80.1 78.68 0.84 84.03  79.28 2.74 83.98  78.6 0.19 84.35  79.59 1.44
ffu 7026  78.49  76.77 1.17 82.23  77.32 3.35 81.7 76.4 0.22 82.25 77.51 1.96
alu 7046  74.65 T72.79 1.33 81.64 75.21 3.62 81.31 75.61 0.23 81.88  75.67  2.11
byp 28847 75.14  70.21 6.31 75.24  69.1 12.55 74.82  68.35 0.78 75.56  69.38 6.25
mul 62988 70.23 68.59  30.98 75.21  69.89  38.94 74.54  68.69 2.03 75.33 70.01 13.64
Avg. 19402 75.82 73.70 6.91 79.82 7448  10.59 79.45 73.86  0.61 80.02  74.74  4.45
Ratio 0.95 0.99 1.55 1.00 1.00 2.38 0.99 0.99 0.14 1.00 1.00 1.00
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Table 5.2: Comparison with the ISPD 2016 work on the RGDD problem

Cireui DP_AP [70] Our_DP
ircuits
MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s)
efc 98.63 96.84 3.36 98.58 97.09 2.56
ecc 98.55 97.44 3.80 99.19 98.17 2.28
ffu 98.83 97.35 4.99 98.52 97.44 3.12
alu 98.14 96.39 5.40 97.87 97.01 3.51
byp 97.29 91.35 41.41 97.34 92.11 15.85
mul 96.39 94.91 417.76 97.65 95.21 55.07
Avg. 97.97 95.71 79.45 98.19 96.17 13.73
Ratio 1.00 1.00 5.79 1.00 1.00 1.00

than that of “Our_DP”, which shows that “Our_DP” is a very fast method for
the RGDD problem. The great improvement of runtime is due to our two stage
process, in which we divide a large and dense conflict graph into many small

size connected components.

Table 5.3: Comparison with the ISPD 2016 work on the RGDT problem

o TP_AP [70] Our_ TP
Circuits
MR(%) IR(%) CPU(s) MR(%) 1IR(%) CPU(s)

efc 99.53 97.89 7.38 99.94 99.04 1.72
ecc 99.67 98.62 7.93 99.93 99.60 1.41
ffu 99.45 97.93 12.02 99.93 99.19 1.83
alu 99.16 97.44 11.55 99.88 98.95 2.11
byp 98.98 92.88 136.69 99.83 95.42 10.10
mul 98.31 96.85 1613.23 99.78 98.41 47.12
Avg. 99.18 96.94 298.13 99.88 98.44 10.72

Ratio 0.99 0.98 27.82 1.00 1.00 1.00

In Table 5.3, “TP_AP [70]” is the approximate algorithm proposed in
[70]. “Our_TP” is our two stage method for the RGDT problem. Compar-
ing “Our_TP” with “TP_AP [70]”, “Our_TP” obtains greater average MR and
IR with the improvements 1% and 2%, respectively. Moreover, the average run-
time of “TP_AP [70]” is 27.82x more than that of “Our_TP”, which shows that

“Our_TP” is a very fast algorithm for the RGDT problem. Furthermore, from
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Figure 5.14: Three more usable types of guiding templates. (a) t5. (b) ts. (c)
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the respect of average runtime, “TP_AP [70]” in Table 5.3 is much slower than
“DP_AP [70]” in Table 5.2, since the numbers of variables and constraints in
“TP_AP” are much more than those in “DP_AP”. On the contrary, the average
runtime of “Our_TP” in Table 5.3 is a little less than that of “Our_DP” in Table
5.2. The main reason is that the conflict graph is divided into more connected

components in “Our_TP” in the first stage of our two stage process.

It must be noted that some vias and redundant vias cannot be fabricated
even for triple patterning. If the number of un-fabricated vias and redundant
vias is small, complementary electron beam lithography (CEBL) is a promising
technique for further manufacturing the vias and redundant vias, which is low
cost and high resolution [54]. Otherwise, if the remained un-manufacturable
vias or redundant vias are numerous, then another more mask patterning might

be considered.

5.6.2 Second Experiment

In the second experiment, we further compare our methods with the method
in [39] on the MCNC and the industry Faraday benchmarks for the RGDS
problem. Layouts of all benchmarks are also transformed to grid models, where
a grid size is one metal pitch, and the optical resolution limit spacing d, of

adjacent guiding templates is set to one metal pitch too.

For this comparison, three more guiding template types t5, g and t; are
used besides the types t1, t9, t3 and t4 in Figure 5.2. The three guiding template
types are depicted in Figure 5.14. In order to form the guiding templates t5
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and tg, correspondingly, we introduce a new multiplet D3 as shown in Figure
5.15(a). Under Assumption 5.3.1, the possible combinations of multiplets to
form the guiding templates t5 and tg are listed in Figure 5.15(b) and Figure
5.15(c), respectively. Then the template edge between multiplets S; and Dj
can be calculated. There exist some incompatibility structures for ¢ templates,
which are similar for ¢3 in Figure 5.10(b). To exclude these incompatibility

structures, Constraint (5.3) should be added into the MWIS problem (5.2).

In order to handle the template type t; with six holes, we introduce a new
multiplet called sextet as shown in Figure 5.15(d), where v;, i € {1,2,--- 6},
can be a via or a redundant via. We use the detection windows in [39] to identify
all sextets, and construct a new conflict graph by adding the multiplets D3 and
sextet and the related edges. Then we solve the RGDS problem by ILP solver

and the MWIS solver on the new conflict graph respectively.

In Table 5.4, we list the results of three solvers “ILP [39]”3, “Imp_ILP [39]”,
“Our_ILP” on the RGDS problem, where the last two rows of the table are
the average results and the ratios based on the average results of “Our_ILP”.
“Imp_ILP [39]” is the same as “Imp_ILP [70]” in Table 5.1, in which the results
were obtained by solving the ILP in [39] on our redundant via candidates. The
results in column “Our_ILP” were obtained by using CPLEX [2] to solve our

ILP formulation.

Comparing “ILP [39]” with “Our_ILP”, we improve the average IR by 4%.

3The results of ILP [39] are directly cited from the paper, in which the platform was Core
i7 3.5GHz with 72GB memory, and CPLEX was used as the ILP solver.
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Table 5.4: Comparison with the ILP in TCAD 2017 work on the RGDS problem

Circuits #V ILP [39] Imp ILP [39] Our_ILP
MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s)

struct 12551 99.86 99.42 30.00 99.67 99.52 58.21 99.60 99.54 13.41
primaryl 8764 99.80 99.21 28.00 99.68 99.63 43.56 99.53 99.48 8.95
primary2 32684 99.54 98.97 72.00 99.67 99.46 96.51 99.68 99.46 36.55
$5378 8649 81.10 61.78 11.00 84.09 68.87 13.55 85.11 68.81 2.75
59234 6874 80.07 59.54 9.00 82.80 68.03 8.62 82.96 69.17 2.37
s13207 18780 84.36 66.93 23.00 84.22 70.99 29.98 83.86 72.24 5.51
s15850 22694 82.70 64.41 28.00 83.99 69.17 36.83 84.23 70.80 7.37
s38417 54225 84.01 65.71 65.00 83.45 70.70 82.10 83.47 71.74 18.07
s38584 74155 81.53 63.01 88.00 82.90 69.20 118.67 83.15 69.87 25.26
dma 34697 97.85 95.29 55.00 97.22 95.88 69.53 97.12 95.71 15.71
dspl 30317 99.05 97.57 53.00 98.42 96.66 66.71 98.36 97.54 17.34
dsp2 31301 98.51 96.68 52.00 98.18 96.93 63.57 98.22 97.45 17.01
riscl 43858 98.78 96.93 75.00 98.14 96.83 112.82 98.14 96.83 24.02
risc2 44385 98.80 96.91 77.00 98.16 96.87 112.65 98.09 96.74 23.73
Avg. 30281 91.86 83.03 47.57 92.19 85.55 65.24 92.25 86.10 15.58

Ratio

1.00 0.96 3.05 1.00 0.99 4.19 1.00 1.00 1.00
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Table 5.5: Comparison with the graph method in TCAD 2017 work on the
RGDS problem

Ciredi Graph [39] Our_MWIS
1rcults
MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s)
struct 99.86 99.06 2.60 99.72 99.32 9.33
primaryl 99.80 98.71 3.20 99.53 99.28 8.42
primary?2 99.55 97.73 8.00 99.64 99.01 35.31
sH378 81.11 56.89 0.30 83.95 67.91 0.27
s9234 80.07 55.34 0.30 82.87 68.32 0.25
s13207 84.35 62.35 0.80 83.09 70.54 0.90
s15850 82.71 59.65 0.90 84.03 70.08 1.20
838417 84.00 61.08 2.40 83.05 71.27 4.42
s38584 81.52 58.23 3.10 82.82 69.04 7.38
dma 97.86 92.89 3.10 96.57 94.19 1.94
dspl 99.06 96.14 3.70 98.05 96.35 2.25
dsp2 98.50 95.20 3.40 97.77 96.19 2.45
riscl 98.77 95.18 6.10 97.79 95.89 5.08
risc2 98.81 95.09 5.80 97.71 95.75 5.27
Avg. 91.85 80.25 3.12 91.90 85.22 6.03
Ratio 1.00 0.94 0.52 1.00 1.00 1.00

Furthermore, the average runtime of “ILP [39]” is about 3x more than that of
“Our_ILP”. Both of the results in columns “Imp_ILP [39]” and “Our_ILP” are
almost the same, but the average runtime of “Imp_ILP [39]” is about 4x more
than that of “Our_ILP”. These verify that our ILP formulation is better than

that in [39] for RGDS problem, which has less variables and constraints.

The results in “Graph [39]” and “Our-MWIS” of Table 5.5 were obtained
by the graph method in [39] and our MWIS solver, respectively. The average
runtime of “Graph [39]” is half of “Our_-MWIS”, but the average IR of “Graph
[39]” is 6% less than of “Our_ MWIS”.

To demonstrate the scalability of our ILP formulation and the proposed fast
MWIS algorithm, we further tested them on nine much larger benchmarks from
the ISPD 2015 Placement Contest [17], which were processed by NTUPlace4dr
[45] and Cadence SoC Encounter [1]. The experimental results are listed in Table

5.6. Compared with “ILP [39]”, “our_ILP” achieves 2.54x shorter runtime.
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Table 5.6: Comparison with the TCAD 2017 work on the RGDS problem

ILP [39] Graph [39] Our_ MWIS Our_ILP
MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s) MR (%) IR(%) CPU(s) MR(%) IR(%) CPU(s)

Circuits #V

mgc_des_perf_-1 736470 94.04 76.89 962.00 94.05 72.37 52.00 92.58 82.74 138.27 9542 83.95 478.93
mgc_des_perfa 765166 95.98 76.41 928.00 95.98 7258 60.00 94.23 80.41 113.83 96.70 81.75 362.21
mgc_des_perf_b 720412 96.68 83.35 951.00 96.69 79.75 61.00 94.56 85.94 128.57 96.81 88.17 376.58
mgc_fft_1 238324 94.79 7853 317.00 94.78 73.97 17.00 9257 84.14 13.03 95.26 &85.28 112.22
mgc_fft_2 255324 95.64 &81.70 336.00 95.65 77.42 18.00 93.36 85.74 14.31 9593 87.90 115.97
mgc_fft_a 234441 96.45 &84.11 328.00 96.46 79.93 24.00 94.06 87.11 15.01 96.42 88.21 105.31
mgc_ftt_b 247866 95.36 79.66 334.00 95.36 74.99 24.00 93.33 84.52 14.96 95.88 85.59 123.28
mgc_pci_bridge32_a 198376 96.80 82.88 258.00 96.79 79.10 14.50 94.56 86.22 9.99 96.80 87.21 88.85
mgc_pci_bridge32_b 172483 97.55 88.74 273.00 97.54 86.06 20.10 95.08 90.20 13.59 97.21 91.36 81.38

Avg. 396540 95.92 81.36 520.78 95.92 7735 3229 93.81 85.22 51.28 96.27 86.60 204.97
Ratio 1.00 094 254 1.00  0.89 0.16 097 098 0.25 1.00  1.00 1.00
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Figure 5.16: A result of the RGDS problem on benchmark s9234.

Compared with the graph method in [39], our ILP based method improves the
average insertion rate by 11%. On these larger test cases, our MWIS based
algorithm is still fast and effective. It takes only 0.25x average runtime of our
ILP based method with only 3% manufacture rate loss and 2% insertion rate

loss.

In the layout, there are three metal layers, Metal 0, Metal 1 and Metal 2,
and two via layers Vy_; and V;_5. In the legend of Figure 5.16, M /via/rvia/0-1
(in blue) denotes manufacturable via and redundant via on layer V_y, U/via/0-1
(in red) denotes un-manufacturable via on layer Vo_1, M /via/rvia/1-2 (in green)
denotes manufacturable via and redundant via on layer V;_,, and U/via/0-1 (in

black) denotes un-manufacturable via on layer V;_,.

5.7 Summary

In this chapter, we have considered the redundant via insertion and guid-
ing template assignment for the DSA with multiple patterning (RGDM) prob-
lem, including single patterning (RGDS), double patterning (RGDD) and triple
patterning (RGDT). First, for the RGDS problem, we constructed a new ILP

formulation basing on our conflict graph. The vertices in the conflict graph are
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multiplets instead of guiding template assignments (GTAs), which can greatly
reduce the size of the conflict graph. To fast solve the ILP, a local optimal
MWIS solver was introduced to obtain a local optimal result. Second, for the
RGDD and RGDT problems, we proposed a two stage method. At the first
stage, a contraction graph is constructed, and the max-M-cut problem is formu-
lated and solved to obtain a mask assignment. At the second stage, our MWIS
solver for RGDS is used to obtain a redundant via insertion and guiding tem-
plate assignment for every mask. Experimental results validate the efficiency

and effectiveness of our ILP formulation and algorithms.
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Chapter 6 Redundant Via Insertion and DSA
Guiding Template Assignment with Dummy
Via

6.1 Introduction

Due to various reasons such as random defects, cut misalignment, electro
migration and thermal/mechanical stress [85], a single via may fail partially
or completely. Via failure heavily impacts functionality and yield of a design
[57,94]. Up to now, redundant via (RV) insertion has been considered as the
necessary step for reducing via failure, and then improving circuit reliability and
yield [20,56]. The redundant via insertion technique is that we should insert a
redundant via close and align to every via. As shown in Figure 6.1(a), the
four positions r of via v are called the redundant via candidates (RVC), since
a redundant via of v may be inserted at one of the four positions. In addition,
an inserted redundant via should not cause any circuit short, i.e., an inserted
redundant via should not overlap with any metal wire from other nets of wires.
In Figure 6.1(b), the only legal RVCs of vias vy, vy and vg are 71, o and 73,

respectively.

Block copolymer directed self-assembly (DSA) is considered as a promising
fit technique for via layers beyond the 7nm node technology [98,99]. Specially,
the previous works have made many significant improvements on manufactur-
ing, modeling, simulation and graphoepitaxy of DSA [64,87]. These improve-
ments make patterning feature by DSA technology possible. In DSA, the block
copolymers form cylinders, and the remainder material can be used to fabri-
cate contacts/vias by removing cylinders. To generate irregularly distributed
vias using DSA, guiding templates surrounding vias are required [55,77]. These

guiding templates are manufactured by the conventional optical lithography,
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Figure 6.1: (a) A via and four possible positions of its RVCs. (b) Legal RVCs.
(¢) A redundant via insertion and guiding template assignment result.

and thus the resolution is limited by the pattern pitch. In addition, for im-
proving the resolution, some close vias may be put into a multi-hole guiding
template [7,90]. Naturally, we should assign a guiding template for every vi-
a. The guiding template assignment problem is crucial, which has been well
investigated in [7,52,55,77,90].

To improve the resolution, some close vias (includes redundant vias) may
be put into a multi-hole guiding template [7,90]. Naturally, we should assign a
guiding template for each via and redundant via. Figure 6.1(c) shows a guiding
template assignment for the layout in Figure 6.1(b), where vias ve and vs, and
redundant vias 5 and r3 are assigned to a four-hole template, however via v; and
redundant via r; cannot be guided and patterned due to the resolution limit.
The guiding template assignment problem is crucial since it patterns as many

as possible vias and redundant vias [7,52,90].

In the traditional design process, the redundant via insertion and the man-
ufacture of via layers are processed in two separate stage. Fang et al. in [39]
first concurrently considered the redundant via insertion and DSA guiding tem-
plate assignment problem. For this concurrent consideration, both the number
of insertable vias (insertion rate, IR) and the number of manufacturable vias
(manufacture rate, MR) are increased, especially the number of manufacturable

vias. To improve both of the insertion rate and the manufacture rate, some
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techniques are used, such as wire bending, dummy via insertion and multiple
patterning. In [38], Fang et al. investigated the redundant via insertion and
DSA guiding template assignment problem with wire bending. By local per-
turbing some metal wires, it becomes more free for inserting redundant vias at
the cost of increasing the wirelength. In addition, in [70] Ou et al. considered

the problem with multiple patterning, and gave an ILP based approach.

Although the bending wire insertion and multiple patterning techniques can
be used to improve the numbers of insertion and manufacture rates, one or more
following defects limit the usability of wire bending and multiple patterning
for via manufacture. First, the multiple patterning process will multiply the
manufacture cost; Second, wire bending will increase the wirelength; Third, for
the advanced 1-D metal layer design, wire bending are unwarrantable. To avoid
the above three drawbacks, Hung et al. [47] studied the problem with dummy
via insertion, in which some dummy vias are inserted for assisting formation of

guiding templates.

After using dummy via insertion, the layout is more free for inserting re-
dundant vias and using multi-hole guiding templates, which achieves a higher
insertion rate and manufacture rate. In [47], the authors generated all guiding
template candidates for all the redundant via candidates, dummy via candidates,
and immediate neighbor vias. The generated guiding template candidates are

utilized to express solution space, which is extremely large.

It is desirable to derive a more effective and efficient solution expression and
its optimization method for the guiding template assignment with redundant via
and dummy via insertions problem. The main contributions of this paper are

summarized as follows.

e Unlike the guiding template candidate solution expression in [47], we in-
troduce a dictionary-based manner to express solution. The new compact

expression can discard redundant solutions significantly.
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Figure 6.2: Seven usable types of guiding templates.

e Honoring the compact solution expression, we construct a conflict graph
with dummy via insertion, and then formulate the problem as a constrained

maximum weight independent set problem (CMWIS).

e We relax the problem to an unconstrained nonlinear programming (UNP)

to make a good tradeoff between solution quality and runtime.

e We develop a line search optimization algorithm to solve the UNP. In addi-
tion, an effective initial solution generation operation is proposed to avoid

involving undesirable local extremum.

e Experimental results show the efficiency and effectiveness of our solution
expression and optimization method. Specifically, our algorithm achieves
comparable experimental results with a state-of-the-art work, and saves 94%

runtime.

6.2 Preliminaries
In this section, we introduce some related concepts and the considered prob-
lem.

6.2.1 Redundant Via Insertion

For convenience of solving the problem, we consider the redundant via in-

sertion and DSA guiding template assignment problem on a grid graph. Suppose
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the grid coordinate of a single via v; is (z;,y;). For the four grid coordinates
(i — L), (i 4+ L y), (xi,y; — 1) and (z;,y; + 1), each of them is called a
redundant via candidate (RVC) of v;, if this position is not occupied by other
vias or metal wires from other nets. The objective is inserting a legal redundant

via for every via.

6.2.2 Guiding Template Assignment

For the DSA technique, template is needed for guiding the holes. Since
irregular guiding template has a higher chance of generating overlay error, to
guarantee the overlay accuracy, we only use some regular guiding templates
with few holes. In this chapter, the usable seven types of guiding templates are
shown in Figure 6.2 as of [39]. Furthermore, for high resolution and focal depth
of guiding templates, the spacing between neighboring guiding templates should
not be less than the optical resolution limit spacing ds. Generally, d; is set not
less than the distance between a redundant via and its related via, and not less
than the hole pitch in a guiding template. We need to decide the assignment of
guiding templates, such that more vias and redundant vias can be surrounded

by guiding templates.

Figure 6.1(c) shows a guiding template assignment for the layout in Figure
6.1(b), where vias v and vs, and redundant vias r and r3 are assigned to a
four-hole template. However, via v; and redundant via r; cannot be patterned

due to the resolution limit.

6.2.3 Dummy Via Insertion

Vias or redundant vias manufactured by DSA technique must be guided by
some templates. And the most popular manufacture technique for these guiding
templates is conventional lithography. For some dense structures in a layout,
some used guiding templates cannot be manufactured due to the limitation of

optical resolution. Furthermore, the vias or redundant vias guided by these
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Figure 6.3: (a) A layout. (b) Redundant via insertion and guiding template
assignment. (c) An irregular guiding template. (d) A result with dummy via
insertion.

unmanufactured guiding templates cannot be formed by DSA block copolymer.
Given a layout in Figure 6.3(a), due to the limitations of the used templates in
Figure 6.2 and the small pitch between vias, via v, and redundant via ry are

unpatterned in Figure 6.3(b).

We cannot change the pitch between vias, and the used guiding templates
must be regular, hence the shape of guiding template in Figure 6.3(c) is unde-
sirable for DSA block copolymer. Therefore, the only effective trick is changing
the shape of a structure of vias by adding some dummy vias (DV), such that

the structure of vias matches the used guiding template.

In a circuit, dummy via does not connect to any wire, which is only used
for filling the guiding template. The insertion of dummy vias should satisfy
the following two conditions: i) the insertion can make up a multi-hole (not
less than three holes) guiding template with other vias or redundant vias; ii) it
can improve the insertion rate or manufacture rate. Obviously, if an inserted
dummy via does not satisfy the above two conditions, then the dummy via is
useless. Figure 6.3(d) shows one result of guiding template assignment with
careful insertion of dummy via d;, wherein a six-hole template is used to guide

the vias and RVs.

After finding the possible RVCs, we should find all potential guiding tem-

plate assignments for every via. In a grid graph, if all grid points covered by
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a multi-hole (not less than three holes) guiding template are vias or redundant
vias, then the guiding template does not need dummy vias; otherwise, every
empty grid point needs a dummy via for forming a complete guiding template.
If these needed dummy vias on the empty grid points satisfy the above two

conditions, then these empty grid points are marked as dummy via candidates

(DVC).
6.2.4 Problem Formulation

The problem aims at inserting a redundant via for every via, and man-
ufacturing all vias and their redundant vias by the DSA technique with the
help of dummy via insertion. The redundant via insertion rate (IR) and the
manufacture rate (MR) are considered as evaluation indicators in [39,70]. The
insertion rate is defined as the ratio of the number of inserted redundant vias
to the number of vias. And the manufacture rate is the ratio of the number of

manufacturable vias to the number of vias.

Since via manufacturability is generally the first consideration for yield, an
inserted redundant via should not cause generation of an infeasible via pattern
[39]. Hence, we assume that a redundant via cannot be inserted, if its related
single via is not manufacturable. According to this assumption, we can easily
obtain another equivalent assumption, i.e., a via and its redundant via (if exists)
should be assigned to the same guiding template [70]. Under this assumption,
the redundant via insertion and DSA guiding template assignment with dummy

via insertion (RDD) problem is formulated as follows:

Problem 6.2.1. Given a post-routing via layers layout, the usable types of
guiding templates, and the optical resolution limit spacing dy, insert a redundant
via for every via, assign guiding templates for vias, redundant vias and dummy
vias, such that: i) the inserted redundant vias are legal; ii) the spacing between
neighboring guiding templates should not be less than ds. The objective is
maximizing MR + - IR, where (3 is a weighting parameter.
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Figure 6.4: Multiplets.

6.3 Conflict Graph Construction

After finding all possible redundant via candidates and dummy via candi-
dates, we introduce a concept of multiplet, where a multiplet is composed of
some vias and some candidates, and multiplets can be used to compose guiding
templates. Five types of multiplets are shown in Figure 6.4, where a single in-
cludes a via; a doubletl includes a via and a redundant via candidate; a doublet2
includes two aligned vias; a doublet3 includes two diagonal vias; and a sextet
includes six vias or redundant vias, which can be covered by a six-hole guiding

template.

Under our assumption that a via and its redundant via should be assigned
to the same guiding template, we have some observations: i) a guiding template
cannot only include redundant vias; ii) the number of redundant vias must not
be larger than the number of vias in a guiding template; iii) for every redundant
via in a guiding template, its via must also be in the guiding template. Then
the seven types of usable guiding templates in this chapter can be formed by
grouping some multiplets, as shown in Figure 6.5, where we only list the vertical

cases and skip the horizontal cases due to similarity.

A DVC must belong to some guiding template, and then it must belong
to some multiplet. At the DVC finding stage, we can easily find out which
multiplet a DVC belongs to.

Given a result of finding redundant via candidates as in Figure 6.6(a), we
can identify all possible multiplets as in Figure 6.6(b), and these multiplets are

regarded as vertices in the conflict graph. Based on these vertices, we introduce
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Figure 6.5: All possible combinations of multiplets to form the seven types of
guiding templates.

some edges between them. The conflict graph of Figure 6.6(b) is shown in
Figure 6.6(c). The detailed definitions of edges and conflict graph are presented

as follows.

Definition 6.3.1 (overlap edge). If multiplets i and j are overlapped with each
other, then there exists an overlap edge e;; between 7 and j. Let Ep be the set

of overlap edges.

Definition 6.3.2 (conflict edge). If the distance between two multiplets i and
J is not larger than d,, and there does not exist an overlap edge between ¢ and
J, then there exists a conflict edge e;; between ¢ and j. Let E¢ be the set of

conflict edges.

Definition 6.3.3 (template edge). For two multiplets i and j, suppose that
at least one of them is not S;. If ¢ and j can be assigned simultaneously to a
guiding template without any design error, and between ¢ and j there exists a
conflict edge e;; € E¢, then e;; is also called a template edge between ¢ and j.

Let Er be the set of template edges. Obviously, Er C E¢.

Definition 6.3.4 (conflict graph, C'G). The conflict graph is an undirected
graph CG(V, E), where vertex v € V denotes a multiplet, e;; € E is an edge
and F = (Ec—Er)UEo. Ec, Er and Eg are the sets of conflict edges, template

edges and overlap edges, respectively.
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Figure 6.6: (a) A layout after finding RVC and DVC. (b) All multiplets of the
layout in (a). (c) Conflict graph.

The conflict graph of the layout in Figure 6.6 is constructed in Figure 6.6(c),
in which the vertices are the multiplets in Figure 6.6(c). The black edges are the
overlap edges, the red edges are the conflict edges, and the green dotted edges
are the template edges. In Figure 6.6(a), multiplets a and g are overlapped
with each other at vy, hence there is an overlap edge between them as in Figure
6.6(c). The distance between multiplets a and e is not larger than ds, hence
there is a conflict edge between them. Since multiplets a and c can be assigned
to a four-hole guiding template as in Figure 6.6(c), there is a template edge
between a and c. Note that for the conflict graph of Figure 6.6(b), every vertex
is in fact connected to vertex h by an overlap edge, but we skip drawing these

overlap edges in Figure 6.6(c) for easiness of visualization.

6.4 Our Algorithms

In this section, we first formulate the redundant via insertion and DSA guid-

ing template assignment with dummy via insertion problem into a constrained
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maximum weight independent set (CMWIS) problem. The CMWIS problem is a
ILP formulation, which can directly be solved by existing commercial optimiza-
tion solver. To achieve better trade-off between runtime and solution quality, we
relax the CMWIS problem into an unconstrained nonlinear programming (UN-
P), and propose a line search based optimization algorithm to solve the UNP.

Moreover, the convergence of the proposed algorithm is proved.
6.4.1 Constrained Maximum Weight Independent Set Problem

According to the conflict graph of the RDD problem, we construct the
constrained maximum weight independent set problem. For the multiplets over-
lapped with each other, only one of them can be chosen to pattern due to overlap.
Thus, in the conflict graph, if between two multiplets i« and j with e;; € Ep,
then only one of the multiplets can be patterned. Furthermore, if two multiplets
are within the optical resolution limit spacing d, then only one of them can be
patterned due to limitation of resolution, unless the two multiplets are assigned
into the same guiding template. That is, if between the multiplets i and j there

exists e;; € E¢, but e;; ¢ Er, then only one of them can be patterned.

If two multiplets i and j are connected by a template edge, then they may
be assigned to the same guiding template, but not necessarily. Specially, for
the structure shown in Figure 6.7(a), multiplets ¢ and [ are connected to k by
two template edges, but i, k and [ cannot be simultaneously assigned to the
same guiding template, since we do not have a guiding template with four holes
aligned in a line. We call the triple (¢, k, [) in Figure 6.7 as incompatibility
structure (Inc), and we let INC be the set of Incs.

Definition 6.4.1 (Inc). The incompatibility structure is a structure composed
of three multiplets 7, k and [, in which e;; and ey, are template edges and there

does not exist any edge between ¢ and (.

In addition, different multiplets include different vias and redundant vias.

The objective of the RDD problem is maximizing M R+ (- IR, i.e., maximizing
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the weighted sum of the number of manufacturable vias and the number of
inserted redundant vias. Suppose the weights of a via and a redundant via is 1
and [, respectively. We jointly consider MR and IR by assigning weight w; to

every multiplet i as

wi:Nv+6'Nra (61)

where N, and N, are the numbers of included vias and redundant vias by
multiplet i, respectively. Let W be the set of weights, then the conflict graph
CG(V, E) is weighted and written as CG(V, E, W).

Thus, we formulate the RDD problem as the constrained maximum weight

independent set (CMWIS) problem

max Z W;ix; (6.2)

iev
st. oz +x; <1, Ve;; € E; (6.2a)
z; € {0,1}, VielV. (6.2¢)

In the CMWIS problem, Constraint (6.2a) shows that, if there exists e;; € Eo
or e;; € Ec — Ep between vertices ¢ and j, then at most only one of them can
be patterned. Constraint (6.2b) is used to force that, if ¢, £ and [ compose an

Inc, then at most two of them can be patterned.
6.4.2 A Fast Algorithm for The CMWIS Problem

The CMWIS problem is NP-hard, since it contains the maximum weight
independent set problem as a special case. Hence, it is time consuming to solve
the CMWIS problem by ILP solver for a large scale layout. In this subsection,

we develop a fast algorithm to obtain a local optimal solution of the problem.
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Figure 6.7: Three kinds of incompatibility structures.

It must be remarked that, the obtained conflict graph can be divided into nu-
merous connected components, and we deal with the CMWIS problem on the
connected components one by one. Note that the ILP formulation of Prob-
lem (6.2) can be relaxed into a linear programming (LP) by discarding integer
constraint (6.2c). However, the relaxed linear constraints (6.2a) and (6.2b) of
Problem (6.2) would become weak. For example, with z; = 0.5 and z; = 0.5,
we have 0.5+ 0.5 > 1, which still satisfies the linear constraint (6.2a). In this
section, we would derive an unconstrained nonlinear programming relaxation

instead of linear programming relaxation for Problem (6.2).

Firstly, the ILP formulation (6.2) of the CMWIS problem is equivalent to

max Z (s (6.3)

eV
s.t. xx; =0, Ve, € E; (6.3a)
rixpr; =0, V(i, k, 1) € INC; (6.3b)
z; € {0,1}, VieV, (6.3c)
where w = (wy,wy, -+ ,w,)T € R", x = (x1,29, -+ ,2,)T € {0,1}", n = |V|.

Then Problem (6.3) can be rewritten as
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max Z{wl:v@ H (1—x) H (1 —zpxy)} (6.4)

i€V jev kleV
eij€E (i,k,1)eINC
st. z; €{0,1}, VieV. (6.4a)

Let B = (B;;) € {0,1}"*" be the adjacency matrix of the conflict graph CG
with Bij =1if €ij € F and Bij =0if €ij ¢ E. Andlet C = (Czkl) S {0, 1}n><n><n
be a three dimensional tensor with Cj, = 1 if (i, k,1) € INC, otherwise Cjy, =

0. Then, Formula (6.4) is equivalent to

max Z{wm H(l — x;) P H (1 — apay) ™) (6.5)

eV jev kleV
st. x;€{0,1}, VieV. (6.5a)
1 T T T T T T
_,Y=2
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Figure 6.8: Sigmoid function o(y;) with different .

Although Problem (6.5) is equivalent to Problem (6.2), it is still a discrete
formulation. To fast solve Problem (6.5), as common in combinatorial optimiza-

tion, we relax this discrete formulation to the continuous domain. First, we
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introduce an auxiliary vector y = (y;) € R", and approximate the constraint

z; € {0,1}, Vi € V with the sigmoid function
z; =~ o(y) = (1+e )™ (6.6)

Above sigmoid function is used to approximate function

0, v <0;
1, y; > 0.

The detailed curves of sigmoid function with different + are plotted in Figure

6.8, where v is set as 8 in this paper for a sharper sigmoid function.

Then Problem (6.5) is approximated as

max f(y) = Y fwio(y) [T = aty;)® [ (1 =ol)o(m) ™). (6.8)

=% jev kleV

If we obtain a solution y* of Problem (6.8), then the final solution x* is obtained

by rounding the sigmoid function value o(y;) to the nearest integer, Vi € V.

Problem (6.8) is an unconstrained nonlinear programming problem. Let

gi(y) = o) [T = o(w;)® T (1 = olur)o(w)) . (6.9)

JjeEV k,leV

Then the objective of (6.8) is f(y) = >_, wigi(y)-

Our Algorithm 6.2 aims at finding a maximal solution y* € R" of (6.8). At

each iteration ¢, the solution is updated following gradient direction of f(y) as:

y D = yO 4 AaV f(y®), (6.10)
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where Aq is the steplength, which is obtained by the Wolfe-Powell inexact line
search method [69]. And [V f(y®)]; = 0f(y")/0y; is calculated by

Vi) = (6.11)
®

) (t)
wig? (1)) B.o Joly ) —oly )y
AN =l =30 Bots) - 303 O T g )

where g() = gi(y®). It is easy to show that the first order dynamic in (6.10)

increases f(y®") in every iteration ¢, and will convergence to a local optimum.

However, since the objective function (6.8) is highly non-linear and non-
concave, the above iteration is highly dependent on the initial solution y(©
and may converge to a poor local optima. Hence, in order to obtain a better
solution, the iteration would be better starting from a good initial solution y(®.
We propose a greedy based algorithm to obtain a good enough initial solution

in Algorithm 6.1.

In line 2 of Algorithm 6.1, w,(I) is the number of vias and redundant vias
covered by multiplet [. In line 4, the selection weight wg(k) of multiplet k is
calculated by

where d.(k) is the number of conflict edges incident to multiplet k, and dy(k) is

the number of template edges incident to multiplet k.

After obtaining a good initial solution, we present our Algorithm 6.2 for
the CMWIS problem. Algorithm 6.2 increases the objective value at every itera-
tion, and converges to a maximal solution. Experimentally, for many connected
components, Algorithm 6.2 even can obtain optimal solutions of the CMWIS

problem. According to our experiments, Algorithm 6.2 only takes few iterations
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to converge from a good enough initial solution. Hence Algorithm 6.2 can fast

obtain a maximal solution.

Algorithm 6.1 Initial solution generation

Input: A connected component of CG(V, E, W);
Output: Initial solution x(© of the CMWIS problem;
repeat
S < {k | k € argmin,cyw, (1) };
repeat
Compute w(k) by Equation (6.12), for all k € S;

1:
2
3
4
5: xEO) < 1, where ¢ = argmin, . qws(k);
6
7
8
9

for every j in V with ej;; € E do
:CE-O)%O, and V+V —{j};ifjes S+ S—{j}
end for
: S+ S—{i},and V <V — {i};
10:  until S =10
11: until V =10

Algorithm 6.2 CMWIS solver

Input: A connected component of CG(V, E,W), convergence threshold § =
1074
Output: Solution x* of the CMWIS problem,;
1: Initialize t < 0;
2: Generate x(*) by Algorithm 6.1;
3. If :L‘Z(-O) =1, let yZ(O) < 1; otherwise, let y
4: repeat
5. Vi eV, compute ggt) by Equation (6.9);
6
7
8
9

(0)

)

— -1

Obtain Vf(y®) by Equation (6.11);
Aa < LineSearch(y®);
y )y + AoV f(y®);
ottt 4+ 1,
10: until [|[Vf(y®)|| <
11: Get xf by rounding a(yi(t)) to the nearest integer, for all i € V.

Lemma 6.4.2. Under Equation (6.11), >, w; Vg, >0

Proof. Let 0; = o(y;). By Equation (6.11),
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Let u; = w;g;, u = (u;) € R', and the auxiliary matrix A = (A;;) € R™" has

the following elements: A;; = 1 —o(y;), if i = j; Ay; = —o(y;), if e;; € E;
o o l1—0o e

Apy = =3, 0y Zle fg;f)a(yf)yk)), if i,k,1 € INC. Then 3., w;Vg; = yuTAVy.

According to Definition (6.11) of Vy; and A;;, we have Vy = ATu. Thus

> wiVg; =yu’ AATu > 0. O

According to Lemma 6.4.2, Y. w;Vg;, > 0 in every iteration, thus we have

following Theorem 6.4.3.
Theorem 6.4.3. Under Equation (6.11), f(y) does not decrease.

Corollary 6.4.4. Strict inequality ) . w;Vg; > 0 cannot be achieved, since
AAT is not positive definite.

Proof. We prove that AAT is not positive definite. The CMWIS contains at
least one node, e.g., x; = 1. It follows, Vj € V,e;; € E, x; = 0. Then,
all the elements of ith row of A are zero, i.e., A does not have the full rank.

Consequently, at least one of the eigenvalues of AAT is zero. [

Theorem 6.4.5. Algorithm 6.2 converges to a local maximum.

Proof. Since x; = o(y;) : R — [0, 1], Vi, then g; : R — [0, 1], Vi. Consequently,
S wigi < wll. And by Theorem 6.4.3, f(y) = Y, w;g; always increases. Thus
Algorithm 6.2 converges, and which stop when the gradient ||Vy|]o = 0, i.e., in

a local maximum. O]

With Theorem 6.4.5, we can achieve a local optimal result by perform-

ing Algorithm 6.2. In addition, if Algorithm 6.2 starts from a desirable initial
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solution x(© by Algorithm 6.1, it likely returns a near global optimal result.

6.5 Experimental Results

Our proposed algorithms for the RDD problem are implemented in C++
and run on a personal computer with 2.7GHz CPU, 8GB memory and the Unix
operating system. We test our method on MCNC benchmarks and the industry
Faraday benchmarks, provided by Fang et al. [39]. As [38], layouts of all bench-
marks are transformed as grid models, where a grid size is one metal pitch.
In the experiments, the distance between a via and its redundant via is set to
one metal pitch, and the optical resolution limit spacing d, of adjacent guiding
templates is set to one metal pitch too. The user-defined parameter S is set to
1. The Branch and Bound approach in the software package CPLEX [2] was

chosen as our ILP solver.

6.5.1 Effectiveness of ILP

To evaluate the performance of the proposed ILP (6.2) in Section 6.4.1,
we compare the obtained results by solving ILP (6.2) with the results from the
ILPs in TCAD’17 [39] and in ASPDAC’17 [47]. The experimental comparisons
are reported in Table 6.1. The data in the columns “TCAD’17 [39]” and “AS-
PDAC’17 [47]” are the results in [39] and [47], respectively’. The results in
“Our_ILP” are obtained by solving our ILP (6.2) in Section 6.4.1. Moreover, in
this table, column “#V” lists the numbers of vias, and column “CPU(s)” is the
runtimes in second. “MR(%)” and “IR(%)” are, respectively, the manufacture

rate and the redundant via insertion rate.

MR — #MV

x 100%, IR = #RV

v = v x 100%.

!The results of [39,47] are directly cited from the papers. The platform of [39] was 3.5
GHz Linux Workstation with 72GB memory, while the platform of [47] was 2.0 GHz Linux
Machine with 56 GB memory.
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Table 6.1: Comparison of computational results of three methods for the RDD problem

Circuits 4V TCAD’17 [39] ASPDAC’17 [47] Our_ILP Our_Fast
MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s) MR(%) IR(%) CPU(s)
struct 12551 99.86  99.42  30.00  99.96 99.79  40.47  99.96 99.81 27.44  99.95 99.69 15.31
primaryl 8764 99.80 99.21 28.00  99.92 99.33 20.14  99.87 99.44 28.73  99.80 99.45  16.43
primary2 32684 99.54 98.97 72.00  99.92 99.49 111.22 99.82 99.42 9211  99.70 99.11  47.20
s5378 8649 81.10 61.78 11.00 9641 7527 3441 9599 76.37 13.62 9512 7537  0.56
9234 6874 80.07 59.54  9.00 9621 7451 38.63 9547 7598 1025 94.03 7540  0.43
s13207 18780 84.35 66.93 23.00 97.13 79.28 99.96 96.04 80.49 2949 9483 79.24  1.94
s15850 22604 82.70 64.41 28.00 96.63 77.35 121.94 9588 79.40 38.37 9455 T77.81  2.69
s38417 54225 84.00 65.71 65.00 96.83 78.13 320.35 96.09 80.38 98.83 9474 78.82 15.59
s38584 74155 81.53 63.01 88.00 9637 7683 416.11 9541 7858 14535 94.23 77.35 27.55
dma 34697 97.85 9529 55.00 99.61 97.49 208.75 99.53 97.38 4241  99.16 97.13  8.65
dspl 30317 99.05 97.57 53.00 99.74 98.45 17642 99.71 98.44 4581  99.50 98.19  13.32
dsp2 31301 9850 96.68 52.00 99.76 98.74 179.37 99.66 98.26 43.50  99.43 98.08  10.87
riscl 43858 9877 96.93 75.00 99.70 98.04 216.61 99.69 98.12 66.72  99.40 97.84 23.90
risc2 44385 98.79 96.91 77.00  99.70 97.98 22922 99.65 98.00 69.80 99.41 97.82 23.87
Avg. 30281 91.85 83.03 4757 98.42 89.33 158.76 98.06 90.01 53.74  97.42 89.38 14.88
Ratio 094 093 320 1.01 1.00 1067 1.0l 1.0l 361  1.00 1.00  1.00
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In the above equations, #MV is the number of manufacturable vias (excluding

redundant vias), #RV is the number of inserted redundant vias.

The difference between the results in “Our_ILP” and in “TCAD’17 [39]”
is that our work considers dummy via insertion but work TCAD’17 [39] does
not. Compared with the computational results of “TCAD’17 [39]”, from the
row “Ratio”, our ILP (6.2) improves MR and IR up to 6% and 7%, respective-
ly. These improvements mainly result from the help of dummy via insertion.
Naturally, considering dummy via insertion will extremely increase the size of
solution space, which leads to more challenge for solving. In spite of this, our

ILP (6.2) achieves less runtime than the ILP in TCAD’17 [39].

Both of the methods in ASPDAC’17 [47] and our ILP (6.2) consider the
dummy via insertion as the complementary technique for improving MR and IR.
From the comparison in Table 6.1, our ILP achieves almost the same results as
the ILP in [47] 2. Tt must be noted that, the average runtime of the ILP in [47]
is 2.95x slower than ours. The improvement in runtime owes to our compact

solution expression, which greatly reduces the solution space.

6.5.2 Effectiveness of Local Optimal Algorithm

In this subsection, we design another experiment to show the performance
of our fast algorithm. In Table 6.1, the data in “Our_Fast” are obtained by
solving our fast algorithm in Section 6.4.2. Compared with the results in columns
“ASPDAC’17 [47]” and “Our_ILP”, “Our_Fast” achieves almost the same quality
of results. In addition, the average runtime of our fast algorithm is 10.67x and
3.61x less than the ILP based method in ASPDAC’17 [47] and our ILP based
method. In order words, compared with the method in [47] and our ILP, our
fast algorithm can save 90% and 72% runtime. These comparisons show that

our fast algorithm is very effective and efficient.

2The slight difference between ASPDAC’17 [47] and Our_ILP (6.2) may be caused by the
different setting of parameter §. In [47], 8 is set to 0.1.
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Metal 0 Metal 1 [] Mivia/via/0-1 - [] Uvia/0-1

Figure 6.9: The result of benchmark s9234 and its a partial layout on vias
between metal 0 and metal 1.

Metal 0 Metal I [] Mivia/rvia/0-1  [] Uvia/0-1

Figure 6.10: The result of benchmark primary2 and its a partial layout on vias
between metal 0 and metal 1.

In order to view the result more intuitively, we plot in Figures 6.9 and 6.10
the results for layouts s9234 and primary2, which is obtained by our CMWIS
based method. In the layout, we show two metal layers, Metal 0, Metal 1, and
two via layers Vj_;. In the legend of Figure 6.9 and 6.10, M /via/rvia/0-1 (blue)
denotes manufacturable via and redundant via on layer V51, U/via/0-1 (red)

denotes unmanufacturable via on layer V{_;.

6.6 Summary

In this paper, we have concurrently considered dummy via insertion for the

redundant via insertion and DSA guiding template assignment problem. We
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constructed a conflict graph on grid model. The vertices in the conflict graph
are multiplets instead of guiding template candidates. This substitution can
greatly reduce the size of the conflict graph. Based on the conflict graph, we
modeled the problem as an ILP formulation, and relaxed it as an unconstrained
nonlinear programming (UNP), and then developed a line search optimization
algorithm to obtain a local optimal solution of the UNP. Since the algorithm
is highly dependent on the initial solution, we used a good enough initial solu-
tion instead of random generation. Experimental results demonstrate that our

solution expression and the proposed algorithm is effective and efficient.
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Chapter 7 Analytical Mixed-Cell-Height
Legalization Considering Average and

Maximum Movement Minimization

7.1 Introduction

Modern circuit designs often contain (tens of) millions of standard cells
located at placement sites on rows. To meet various design requirements such
as low power and high performance, multi-deck cells occupying multi-rows (e.g.,
flip-flops) are often used in advanced technologies [8,32]. Such multi-row height
standard cells bring up challenging issues for placement, especially the mixed-
cell-height legalization, due to the heterogenous cell structures and additional

power-rail constraints, as pointed out in [26,89].

In traditional single-row height standard-cell legalization, cell overlapping
is independent among rows. In contrast, with multi-row height cells, shifting a
cell in one row may cause cell overlaps in another row. The heterogenous cell
structures could incur substantial global cell interferences among all cells in a
circuit. Due to the global cell interference, existing single-row height standard-
cell legalizers [16, 25,28, 30, 50] cannot directly be extended to handle mixed-
cell-height standard cells effectively. As a result, a mixed-cell-height legalization
method needs to consider the heterogenous cell structures, with more global
cell interferences and larger solution spaces. Moreover, the alignment of power
(VDD) or ground (VSS) lines must be considered in mixed-cell-height standard-
cell legalization. For single-row height standard-cell legalization, such VDD /VSS
alignment can easily be handled by vertical cell flipping, e.g., the single-row
height cell ¢; in Figure 7.1. However, the vertical cell flipping is invalid for an
even-row height cell (the double-row cell ¢y in Figure 7.1). During legalization,

therefore, each even-row height cell must be aligned to its correct row which
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Figure 7.1: Example of the VDD /VSS alignment constraints.

meets the VDD /VSS constraint.

In addition, to preserve the quality of a given global placement, an ideal
legalization method should minimize not only the average cell movement but also
the maximum one [29], illustrated in Figure 7.2. In Figure 7.2(a), if we focus
only on minimizing the average movement, we may obtain a legalization result
as in Figure 7.2(b); in contrast, if we concurrently minimize the average and
maximum cell movements, we can obtain a better legalization result as in Figure
7.2(c). Both of the results in Figures 7.2(b) and 7.2(c) have the same average
cell movement, but the maximum cell movement of the result in Figure 7.2(b) is
twice of that in Figure 7.2(c). In this chapter, we aim to minimize the average

and maximum cell movements for mixed-cell-height legalization simultaneously.

Recent state-of-the-art works considered the mixed-cell-height standard-
cell legalization problem [21, 26, 46, 84,89]. Wu et al. [89] first investigated
the standard-cell legalization with both of single- and double-row height cells.
In [26], a multi-row local legalization algorithm was proposed to place cells in
a local region. Wang et al. [84] extended Abacus to handle the legalization
problem with mixed-cell-height standard cells. Hung et al. [46] proposed a flow-
based method to spread cells and placed cells based on an integer linear program
(ILP). With a modulus-based matrix splitting iteration method (MMSIM), Chen
et al. [21] developed a near optimal legalization method to address mixed-cell-
height standard-cell legalization. To guarantee the MMSIM convergence, the
authors pointed out that the objective matrix should be symmetric positive

definite, and the constraint matrix should be of full row rank. Nevertheless,
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Figure 7.2: Comparisons on legalization with average cell movement and that with
simultaneous average and maximum cell movements.

these legalization methods focus only on minimizing the average cell movement,

and do not consider the maximum cell movement.

To minimize the maximum cell movement for single-row height standard-
cell legalization, Darav et al. [28] proposed a flow-based legalization method by
finding augmentation paths among bins. If the flow of a candidate augmentation
path is larger than a pre-set value (named mazimum cell movement), it would
be pruned. Apparently, their method considers the maximum cell movement
as a hard constraint rather than an objective. Further, in order to resolve cell
overlapping, cells are moved from a dense bin to a sparse one along paths [28].
In single-row height standard-cell legalization, cell overlapping is independent
among rows. With multi-row height cells, in contrast, shifting a cell in one row
may cause cell overlaps in another row. What is worse, shifting a multi-row
height cell in a bin to anther one may make cells illegal due a complex domino
effect. Furthermore, in order to meet the VDD /VSS alignment constraints, it is
much harder for the flow-based method to control cells movement. As a result,
it is not easy to extend the flow-based method in [28] to handle the mixed-cell-

height cell legalization problem.

In this chapter, we present an analytical mixed-cell-height standard-cell
legalization algorithm to simultaneously minimize the average and the maximum

cell movements. The major contributions of our work are summarized as follows:

e By analyzing and remodeling the objective function and constraints, we for-

mulate the mixed-cell-height standard-cell legalization problem as a mixed
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integer quadratic program (MIQP), which considers not only the average
cell movement, but also the maximum cell movement, the sub-maximum

movement, and the third maximum movement, etc.

e We convert the MIQP to a quadratic programming problem (QP). Unlike
the work in [21] which minimizes only the average cell movement in the
horizontal direction, we consider cells spreading continuously in both the

horizontal and vertical directions.

e The QP is further reformulated as a linear complementarity problem (LCP),
and solved by a modulus-based matrix splitting iteration method (MMSIM).
The equivalence between the QP and the LCP is proved.

e We prove that the objective matrix of QP is symmetric positive definite and
the constraint matrix of QP is of full row rank; therefore, the convergence

of MMSIM is guaranteed.

e We propose a linear programming (LP) based method to further minimize

the maximum cell movement in the horizontal direction.

e Experimental results demonstrate that our legalization model and method
are effective for minimizing both the average and the maximum cell move-
ments. Compared with the state-of-the-art work [21], for example, our algo-
rithm reduces the average and maximum cell movements by 16% and 64%,

respectively.

7.2 Problem Statement

The problem given are a global placement result with n’ mixed-cell-height
standard cells C' = {c1,¢a- -+, ¢y} with initial bottom-left coordinates for all
cells, and the height and width of a cell ¢; denoted as (z9,4?), h; and w;, respec-

tively. Suppose that each cell has a boundary power-rail type (VSS or VDD).
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The chip is a rectangular sheet from (0,0) to (W, H), where W and H are the
chip width and height, and R;, and S,, denote the row height and placement site
width, respectively. In this chapter, the mixed-cell-height standard-cell legaliza-
tion problem aims at placing each cell to its best position, such that the average
and maximum cell movements are minimized and the following constraints are

satisfied:

1. cells should be aligned with correct VDD /VSSs;
2. cells should be non-overlapping;
3. cells should be inside the chip;

4. cells should be located at placement sites on rows.

Let (z;,y;) be the bottom-left coordinate of cell ¢;, ¢ = 1,2,--- ,n/. The
problem of mixed-cell-height standard-cell legalization with simultaneous aver-

age and maximum movements minimization can be formulated as:

: 1 0 0 0 0
min = > (s = ]+ lys = yf1) + - max(fas — a9 + [ = o?) (7.0)
c;eC
s.t. y; = kiR, Ve; € C,
0,1,2,...}, if ¢; is odd-row height,
k€ { ) row Has (7.1a)
{0,2,4,...} or {1,3,5,...}, o.w;

T; + w; < Zj, \V/Ci,Cj S Ca
if ¢; and ¢; are in the same row, and z; < z;; (7.1b)
0<wmjz+w; <W, 0<y;,y; +h; < H, Ve; € C; (7.1c)
x; = 1;S,1; € {O, 1,2,.. .}, Ve, € C, (71d)

where w is a user-defined parameter, used to weight the average and the maxi-

mum cell movements.
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7.3 Problem Reformulations

In this section, we first formulate the mixed-cell-height legalization problem
as a mixed integer quadratic programming problem (MIQP), then we convert the
MIQP to a quadratic programming problem (QP), and further we reformulate
the QP as a linear complementarity problem (LCP).

7.3.1 Mixed Integer Quadratic Programming

The objective function of Problem (7.1) is the weighted sum of the average
cell movement and the maximum cell movement. We transform the objective

as:

min Y (@i — 2))? + (v — 1)), (7.2)

cieC
where «; can be seen as a weight on the movement of cell ¢;. In fact, Objective
(7.2) includes minimizing the maximum cell movement if «; is assigned a proper
value, i = 1,2,--- ,n’.

Naturally, it would be better that a legalizer can not only reduce the maxi-
mum cell movement, but also the sub-maximum movement, the third maximum
movement, etc. For example, if a cell ¢; overlaps with a macro cell, in order to
resolve the overlap, ¢; must be moved out of the macro cell, then the maximum
cell movement is likely generated. If the generated maximum cell movement
is much more than the other cell movements, then minimizing the maximum
cell movement is meaningless to all the rest cells. Hence, we control the above
scenario by re-assigning weight a; to the movement of each cell ¢;. An intuitive
weight setting rule is that, if the movement of ¢; is larger than the movement

of ¢j, then «; should be larger than a; for reducing the movement of ¢;. In this

chapter, o; is set as:

;= < (v — ) + (yi — ¥))? )i (7.3)

> eclly — a9l + [y — o))
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where k > —1 and is relative to the value of w in (7.1). The parameter x is
used to make a trade-off between the average cell movement and the maximum
cell movement. If k > 1, it focuses on minimizing the maximum cell movement;
If Kk = —1, it focuses on minimizing the average cell movement. In Equation
(7.3), z; and y; are set as the latest iteration results (coordinates) of cell ¢; in

our algorithm (described in Subsection 7.4).
Next, we give detailed analysis and handling of constraints.

First, for Constraint (7.1a), cells should be aligned with correct rows to
meet the VDD/VSS constraints. In order to obtain a high-quality legalization
solution with the least vertical movement, a trivial but effective operation is
moving each cell to the nearest VDD /VSS. Ideally, after aligning to the nearest
correct row, the y-coordinate of each cell ¢; is updated to g from yP. If the
distribution of cells in a row is locally sparse, then the overlapsamong these cells
in this row can be desirably solved; conversely, if the distribution of cells in a
row is locally dense, then the locations of some cells in this row may not be
desirable. They should be assigned to other rows for which Constraint (7.4) still
should be satisfied:

yi € {y) — kLRy, y) + k' Ry}, Ve; € C. (7.4)

In the above equation, if ¢; is odd-row height, then k! € {0,1,2,..., L%J} and

k¥ € {0,1,2,..., LH};hyQJ}; if ¢; is even-row height, then k! € {0,2,4,..., LRiJ}

and k¥ € {0,2,4, ..., LHR_hy;J}. For example, in Figure 7.3, after aligning to the
nearest correct row, the distribution of cells in row 1 is too dense to resolve

overlaps. As a result, the cell ¢y should be aligned to row 2.

Second, for Constraint (7.1b), all cells in the same row are sorted by their
0

initial bottom-left 20, i.e., 29 < x(;, if cell ¢; is on the left of cell ¢; according to

the global placement result. Furthermore, if cells ¢; and ¢; are totally in different

rows, then the position constraint between x; and z; is free. Hence, constraint
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Figure 7.3: Cells are aligned to the nearest correct rows.

(7.1b) can be reformulated as:

where M is a large enough number, i.e., chip width W. If cells ¢; and ¢; are

adjacent in the same row, then z;; = 1; otherwise, z;; = 0.

Third, for Constraint (7.1c), for each cell ¢;, 0 < y;,y; + h; < H is satis-
fied under Constraint (7.1a). Thus, it can be removed. In addition, since we
minimize Objective (7.2), the horizontal moving of each cell would be not far
away from its original position, and there are few cells out of the boundary. We
skip the right boundary constraint temporarily, and then Constraint (7.1c) is
changed as:

Fourth, in Constraint (7.1d), if all the cells are placed at their best positions
in rows, then we only need to shift each cell to their nearest placement sites. We

will handle Constraint (7.1d) in Section 7.4.

Overall, Objective (7.2) and Constraints (7.4), (7.5), and (7.6) compose a

mixed integer quadratic programming problem (MIQP).

7.3.2 Quadratic Programming

For the MIQP in Subsection 7.3.1, variable y; in Constraint (7.4) and vari-
able z; in Constraint (7.5) are integral. In addition, in order to obtain a better
result, all cells in a circuit should be considered together instead of row-by-

row. Consequently, the MIQP is seriously hard to solve for large-scale circuits.
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In this subsection, we relax Constraints (7.4) and (7.5) to linear constraints.

Correspondingly, the MIQP is relaxed to a quadratic programming problem.

In [9], Bai proposed a modulus-based matrix splitting iteration method
(MMSIM), which is very efficient for solving linear complementarity problems.
In addition, Chen et al. [21] modified MMSIM to the QP legalization problem.
In order to use the effective and efficient MMSIM, as [21], we split all multi-row
height cells into single-row height cells for the MMSIM solver. Then the mixed-
cell-height standard cells C' = {c¢1, ¢y -+, ¢} are split as single-row sub-cells

SC = {scy,scy- -+ ,s¢,}. These single-row height sub-cells should satisfy:

Til = Tig = = Lirys
(7.7)
Y+ (ri — DRy =yi2 + (i = 2)Bp = -+ = Yir,-
where sub-cells s¢;1, sc, ..., ¢, are split from a r;-row height cell, r; = h; /Ry,
After cell splitting, Objective (7.2) is transformed to
- Qi — 202 4 (g — 0)2
min ;C o (i —23)" + (i —y;)")- (7.8)

Since an r;-row height cell is split into r; single-row height sub-cells and the
movement of the r;-row cell is counted r; times, we divide the objective function

by r; for each cell in (7.8).

Next, we relax Constraints (7.4) and (7.5) to linear constraints. Actually,
for each sub-cell s¢;, after aligning it to its nearest correct row, i.e., y; = y., the
movement of sub-cell sc; in the vertical direction is minimized. Since sub-cells
may be re-assigned to other rows for achieving better legalization solution, we
relax the range y; of sub-cell s¢; from integers to continuous real numbers. That
is

vi € [y, — kiR, y, + kI'Ry), Vsc; € SC, (7.9)

where k€ {0,1,2,..., | =]} and k' € {0,1,2,..., [Z2 ]},

Since the moving range y; € [y — k! Ry, v} + k" Ry] of sub-cell sc; is excessive,

203



TN e VATS'S

row4 row4

row3 ESC's row3 ] SCs
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Figure 7.4: (a). Vertical moving intervals of sub-cells. (b). The moving ranges of
bottom-left y-coordinate of sub-cells.

a speed-up technique is restricting the moving orientation o; in vertical (upward

or downward) of each sub-cell s¢;. Then, Constraint (7.9) of s¢; is limited as:

] ] (7.10)
[y, yi + k¥ Ry, if o; is upward,

” € { [y, — kLR, yl] . if o; is downward;
where k! and £k are used to control the range of y;. Correspondingly, the vertical
moving interval VM I; of sub-cell sc; is [y} — k'R, 9. + Rp) or [y}, y: + k¥ Ry].
The setting of sub-cell orientation is listed in detail in Algorithm 7.1 (Section
7.4). For example, as shown in Figure 7.4(a), if the orientations of sub-cells
scy, Sco, scz, scq and scs are upward, downward, upward, upward, and upward,
respectively, and k¥ = ki = k¥ = 1 and kY = k¥ = 2, then the VMI; of
each sub-cell is marked by double headed arrow line in Figure 7.4(a), and the

corresponding range of y; for sub-cell s¢; is marked by brace in Figure 7.4(b).

Next, the mixed integer Constraint (7.5) would be relaxed to a linear con-
straint. According to Constraint (7.5), if 2 < m?, and sc; and sc; are adjacent,
then z; +w; < x; 4+ M (1 — z;;), where z;; € {0, 1} denotes whether two adjacent
sub-cells sc; and sc; are in the same row. Since all the sub-cells have the same
height (i.e., h; = R},), 2Ry, reflects the overlapping length of sub-cells s¢; and
sc; in the vertical direction. If z;; = 1, i.e., |y; — y;| = 0, then the vertical over-
lapping length is Ry,; if z;; = 0, i.e., |y; — y;| > Ry, then the vertical overlapping
length is 0. The vertical overlapping length of sub-cells s¢; and sc; with z;; Ry,
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Figure 7.5: Four possible structures for two adjacent sub-cells 7 and j with VMI; N
VMI; # 0.

= max{ Ry — |y; — y;|,0}. Then, for two adjacent sub-cells s¢; and sc;, we have

zij:max{l—M,O}, and (7.11)
Ry

:ci+wi§xj+M-min{‘%£—yj|,1}, if 2 < af. (7.12)
h

By Equation (7.11), the integer variable z;; is relaxed to a continuous vari-
able. In addition, since the VM I; of each sub-cell s¢; can be pre-calculated, if
VMI;NVMI; =0, then we do not need to consider Constraint (7.12). For ex-
ample, for sub-cells scy and scy in Figure 7.4(a), VM I, NV MI5 = (). Otherwise,
if VMI; " VMI; # () for sub-cells s¢; and sc;, then we would check wether sc;

and sc; are adjacent.

Observing Constraint (7.12), it can be seen that this constraint is still hard
to handle due to the absolute value function and the minimum value function. It
should be further transformed to a linear constraint by eliminating the absolute

and the minimum value functions.

For two adjacent sub-cells s¢; and scj, where VMI; N VMI; # (), there
exist four possible cases: (1) sc; and sc; are in the same row and have the same
orientation, as in Figure 7.5(a); (2) s¢; and sc¢; are in the same row and have
different orientations, as in Figure 7.5(b); (3) s¢; and sc; are in different rows
and have the same orientation, as in Figure 7.5(c); (4) s¢; and sc; are in different

rows and have different orientations, as in Figure 7.5(d).
For cases 2) and 3), the relationship between y; and y; is known. If y; <y,

then |y; — y;| = v — vi; if v > yj;, then |y; — y;| = y; — y;. However, for cases
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1) and 4), we do not know which is larger between y; and y;. For the two cases,
we use the initial y-coordinates to determine the value of |y; — y;|. That is, if
y? < y?, then |y; — y;| := y; — y;; otherwise, |y; — y;| := v; — y;. We introduce a

notation © to denote the operator between y; and y;, and let

vi —Yy;, if y; >y, for cases 2) and 3),

dif 40 > 40 f 1) and 4):
’i Oy = and if yi >y for cases ) and 4) (7.13)
J .
y; — v, if y; < y; for cases 2) and 3),

and if y) <y for cases 1) and 4).

. . Oy - . Oy
Furthermore, since the maximum value of 2% is 2. we have min{%=% 1
) Ry ) 2R},

= %. After these transformations, for two adjacent sub-cells sc; and sc;,

Constraint (7.12) is reduced to

0 o 0
TR if v; <zj. (7.14)

— )
y; Rz] is a real number instead

Finally, in Constraint (7.14), M is large and
of an integer. If y; © y; > 0, then My;OTzJ may be too large due to M, and then
Constraint (7.14) may be invalid for resolving the horizontal overlap between
sub-cells s¢; and sc;. In addition, with Objective (7.2), the x; should not be far

away from z?. Hence, we set M as

M = Bij - (w; + wy), (7.15)
where 3;; is a user-defined parameter, which is used to control the value of M.

Thus far, the mixed-cell-height standard-cell legalization problem is refor-

mulated to a quadratic programming problem (QP):
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i > o= + (5 o)) (7.16)

z,y 2r;
sc;esCc Tt

2Ry,
if VMI;NVMI; # 0, sc;, sc; are adjacent, and ) < x?; (7.16a)
Ui € { [y, — KRy, 4], if o; is downward,
l [yl vl + kP Ry), if o; is upward,

s.t. T, +w; < Tj + . (yz ©) yj), VSCi, scj € SC,

x; >0, Vsc; € SC, (7.16Db)
Yo+ (ri = DRy =y + (ri = 2)Rp = -+ = Yir,,
Tig = Tjg = -+ = Typ,, SCi1, - SC;,are from the same cell. (7.16¢)

7.3.3 Linear Complementarity Problem

Since it is generally time consuming to solve a large-scale quadratic pro-
gramming problem with many inequality constraints, we convert the QP (7.16)
equivalently into a LCP, and solve the LCP by the modulus-based matrix split-
ting iteration method (MMSIM) [21]. To guarantee the convergence of MMSIM,
it requires that the objective matrix is symmetric positive definite and the con-

straint matrix is of full row rank.

) )7, and let i = (1:)an —

Let © = (z1, 22, -, 2,)T, and y = (y1,¥2," "+ Yn

[x] . Problem (7.16) can be rewritten as:
Y

min %MTQM +pp (7.17)
s.t. Ap > b (7.17a)
d<y<d (7.17b)
x> 0; (7.17¢)
Ep=f, (7.17d)
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where () is a diagonal matrix with its elements ¢;; = @niinti = ff—, 1 =
,2,-+-+,mn; p1s a vector with p; = —— = L2 ppo = =m0 =
n+1,n+2---,2n; and A is the overlap constraint matrix with only four

Biylwitw;) apd —2ulitws) 3y each row, respectively.
2Ry, )

Bij
nonzero elements 1, —1, =5 i
In order to obtain the uniform boundary constraint 7w > 0, let ¥ = y — d,

and 71 = (@;)2n = . Then we have

Y
min %ETQE +P' R (7.18)
s.t. Al > b; (7.18a)
—Ig>d—d% (7.18b)
> 0; (7.18c)
En=7, (7.18d)

where [ is an identity matrix, and vectors B, b, f are correspondingly transformed

from p, b, f.

To guarantee that the constraint matrix is of full row rank, we increase the
number of variables by duplicating 7 to y with y = 7. Then Constraint (7.18b)
is replaced by —Iy > d —d", and y — 5y = 0. Let F’ H = 0 denote y — 5 = 0.

J J Y J

In this way, Constraint (7.18a) and —Iy > d — d" compose a new system of
inequality constraints, and Constraint (7.18d) and y —% = 0 compose the other

new system of equality constraints.

x _
- ~ Q 0] _ Dl ~ A 0| ~ b
Let p = |75|, = , D = , A = , b= ,
N [o o' " o 0 -1 d— dv
Y
= |E| + |f . .
E = | f= ol Then we describe the standard form of the quadratic

programming problem as follows:
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i S+ (7.19)
s.t. Al > b; (7.19a)
Ei=f; (7.19b)
> 0. (7.19c¢)

For Problem (7.19), we relax Constraint (7.19b) by putting it into the ob-

jective with a penalty parameter A > 0. And a new QP is formulated as:

g~ s e
min SH (Q+AETE)i+ (" — AfTE)i (7.20)
o
s.t. Al > b; (7.20a)
7i > 0. (7.20D)

Proposition 7.3.1. In Problem (7.20), Q + \ETE is a symmetric positive

definite matrix.

Proof. First, @ is a diagonal matrix with all elements not less than 0, and ETE
is a symmetric positive semi-definite matrix. Thus é + AETE is a symmet-
ric semi-definite positive matrix. Furthermore, according to the structure of
@ + )\ETE', there exist a series of elementary matrixes P, P, - - - P, such that
PT(--- (PL(PT(Q + AETE)P,)P,)---)P, = A, where A is a diagonal matrix
with all nonzero elements positive. Let P = PP, --- P,, and P is an invertible
matrix. Then, @ + AETE is a congruent matrix of A. Since A is a positive
definite matrix, and by the proposition of congruent transformation, @ +A\ETE

is positive definite. ]

Proposition 7.3.2. In Problem (7.20), if k! = k¥ = 1 for all sub-cells, then

matrix A is of full row rank.

209



TN e VATS'S

Proof. A is a block diagonal matrix, which is composed of A and —I. Since [ is

an identity matrix, —1I is of full row rank.

Next, we prove matrix A is of full row rank. First, the number of variables
of p is 2n, which is equal to the number of columns of A. Suppose A is an
m X 2n matrix. On the one hand, according to Constraint (7.16a), it can be
found that every row of A has an element with value 1. On the other hand,
if k! = k¥ = 1 for all sub-cells, then all sub-cells are moved only between two
rows. And, if a sub-cell s¢; can be moved only between two rows, then there
are at most two sub-cells next to s¢; and on its left. In other words, at most
two elements with values 1 in the i-th column of matrix A in constraint (7.17a).
This claim holds for every column. Thus, there are at most 2n rows in A, i.e.,
m < 2n. In addition, there are only four nonzero elements in each row, and at
most four nonzero elements in each column. We can choose the columns with
two elements 1 to form an m-order matrix. By fixing the orders of sub-cells in
the z-direction and y-direction respectively, and by elementary transformations,
this m-order matrix can be further transformed to an upper triangular matrix,
in which all diagonal elements are positive. Thus, A is of full row rank. And

further, A is of full row rank. ]

In this chapter, k! and k¥ are set as 1 for each sub-cell. By Propositions
(7.3.1) and (7.3.2), i is the global minimal solution of Problem (7.20) if and
only if there exist vectors r, u, v > 0 such that the quadruple (g, r, u, v) satisfies

the following KKT conditions [69]:

LCP(B,t): w=DBz+t>0, 2>0, and z'w = 0, (7.21)

)+ \ETE —AT p—ATE i
Wherew:u,B: Q+~ , = (b f ),andz:/l.
v A 0 — r

Problem (7.21) is a linear complementarity problem (LCP). According to The-

orem 1 of [21], we obtain the following theorem:
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Theorem 7.3.3. The solution of LC'P(B,t) (7.21) gives the optimal solution
of QP (7.20), and vice versa.

Previous works [9,21] used a modulus-based matrix splitting iteration method
(MMSIM) to solve the LC'P(B,t), which is efficient. And, if matrix B is positive
definite, the global convergence of MMSIM for LC'P(B, t) holds. However, since
é + AETE in LCP(B,t) (7.21) is positive definite, it is easy to check that B
is a positive semi-definite asymmetric matrix. Note that the non-singularity of
B in LCP(B,t) (7.21) is not guaranteed, and further the global convergence of
MMSIM for LOP(B,t) is also not guaranteed. In this work, LCP(B,t) (7.21)
is resolved by an asymptotic modulus-based approach. Before that, the posi-
tive semi-definite matrix B in LC'P(B,t) (7.21) is approximated by a positive
definite matrix B(e) = B + eI, where [ is an identify matrix and ¢ is a small
constant. Then LCP(B(e),t) is closely linked to the unperturbed LC'P(B,t).
By using MMSIM to solve LC'P(B(¢),t), we can obtain a solution close to an op-
timal solution of LC'P(B,t). The gap between the optimal values of LC'P(B,t)
and LC'P(B(¢g),t) is dependent on ¢.

7.4 Our Legalization Framework

In this chapter, we simultaneously minimize the average and maximum
movements by proposing a horizontal- and vertical-direction legalization method
for mixed-cell-height standard-cell legalization. Our framework is summarized
in Figure 7.6. There are three major steps in the framework: 1) preprocessing;
2) horizontal- and vertical-direction legalization; and 3) horizontal-direction le-

galization. The details are stated in the following.

In the preprocessing step, all cells are firstly aligned to the nearest correct
rows (meet the VDD/VSS alignment constraints) by shifting cells in the vertical
direction. In addition, each cell is split into several single-row height sub-cells.

And in order to decide the vertical moving interval V M I; of y; for each sub-cell,
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| Cell alignment with VDD/VSS constraints
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| Convert the problem to a LCP

| MMSIM solving

Row assignment & cell restoration

H-direction legalization

| Minimize max movement by LP solver

Row allocation & illegal cell handling

v
| Legalization result .
———

Figure 7.6: Our legalization framework.

an orientation setting algorithm is proposed in Algorithm 7.1. In Algorithm
7.1, NR is the number of rows in a circuit, and R; is the number of sub-cells
in row 7. 0;; is the orientation of the j-th sub-cell sc;; in row 7. If 0;; = 1,
then the orientation of sub-cell sc;; is upward, and downward otherwise. w; ;,
yg ; are the width and initial y-coordinate of sub-cell sc; j, respectively. In lines
2-4, the ratio of the number of upward cells 7* to the number of downward cells
1 — r* are calculated. Lines 7-17 are used to decide the orientation o; ; of the

j-th sub-cell in row R;.

In the horizontal- and vertical-direction legalization step, we first split cells
into sub-cells. Then as described in Section 7.4, we model the mixed-cell-height
standard-cell legalization problem to LCP(B,t) (7.21), which simultaneously
considers cell moving in both of the horizontal and vertical directions. Then,
we apply the MMSIM [21] to approximately solve LC'P(B,t). Our MMSIM
solution algorithm is depicted in Algorithm 7.2. In Algorithm 7.2, the MMSIM
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Algorithm 7.1 Sub-cell orientation setting

Input: a circuit with all sub-cells aligned to the correct rows;
Output: orientations o of all sub-cells in the vertical direction;
1: fori=0: NR do

calculate the average density ad} of densities of rows i + 1 to NR;
and the average density ad? of densities of rows 0 to 7 — 1;

r* =max{0,min{1,0.5 + ad® — ad?}};

W = Wi, 050 = 1, W = w1, 05,1 = 0;

then

u o u 1.
we =W +wi7j,0i’j—1,

if (1 — Oi,j71>0i,j > 0 and yio,jfl > y’?:J then

if 0;;,-1(1 —0;;) > 0 and ygj_l < ygj then

2:

3:

4:

5:

6: forj=1:R;do

7 if % < %

8:

9: else

10: Wd = Wd + Wy 5, Oi j
11: end if

12:

13: 0ij—1 = 1, 0i.j

14: end if

15:

16: 0ij—1 = 0, 05 = 1;
17: end if

18:  end for

19: end for

20: Return o.

iterations are stated in lines 1-8, and each sub-cell is aligned to a correct row

in lines 9-21. In line 4 of Algorithm 7.2, we choose the splitting matrices M (e)
and N with B(e) = M(e) — N as

N =

LQ+METE) 0
/3* (Q +N ) , M(g) — M + 5[’
i 1D
T (7.22)
(= - D(@Q+AETE) —AT
0 AD|’

where D = tridiag(A(Q + AETE)"*AT), in which (Q + AETE)™* can be fast

calculated by the trick in [21], and *, 6* are two positive constants as in [21].

After Algorithm 7.2, all multi-row height cells are restored. According to [21],

we also can obtain the following theorem:

Theorem 7.4.1. The iteration sequence {z(l)}:ig C R generated by Algorithm
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Algorithm 7.2 Horizontal- and vertical-direction legalization

Input: matrices: M(g), N, B(e); vectors: t, s©, 2(9; parameters: v, ¢, 0, k;
Output: horizontal- and vertical-direction legahzatlon result;

1: repeat
NN

n+l+dz,z—12 n;

(@D —20)24 (51 —y0)2 .
S (|8 - °\+|y<” v )

solve (M (g) + I)s(l“) Ns® + (I — B(g))|s®] — ~t;
ROENIRINGENY

4
)
6
7. until [z — 20-D] < ¢
8: obtain the coordinate (,y) of all sub-cells by z()
9

: 1 =0;
10: repeat
11:if 428 < 5 then
12: Yi = i;
13:  end if
14 if % <10 then
15: yi = v, — kRp;
16: end if
17 if WS ] 5 then
18: Yi = yl + kRp;
19:  end if
20: i+

21: until s > n
22: Return z, y.

7.2 converges to the unique solution z* € R" of LCP(B(¢),t) for any initial

vector 0 € R™,

After the horizontal- and vertical-direction legalization, there still exist
some overlaps due to row assignment by rounding. In addition, each cell must
be aligned to the placement site. In the horizontal-direction legalization step,
we first align each cell to its nearest placement site. After that, if cell ¢; does not
overlap with other cells, then the location of ¢; will be fixed; otherwise, to reduce
the cells overlaps, a linear programming based method is used to minimize the

cell movement.

Given a circuit with all cells realigned to the correct rows and to the place-
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ment sites, the coordinate of cell ¢; is (z,y!). Let OC be the set of cells that

still overlap with other cells. For the cells in OC', we consider the following

problem:
min max |x; — x} (7.23)
x c;,e0C
s.t. x; +w; < xj, Ve, c; € OC, if ¢, ¢; are adjacent in a row,
and ¢; is on the left of ¢;; (7.23a)
z, <W —w,, Ve, € OC; (7.23b)
x; >0, Y¢; € OC, (7.23¢)

where ¢, is the most right cell in every row. Problem (7.23) can be reformulated

as the following linear programming (LP):

mxin Tmax (7.24)
s.t. x; —x; < —wj;, Ve, c; € OC, if ¢, ¢j are adjacent in a row,
and ¢; is on the left of ¢;; (7.24a)
. < W —w,, Ve, € OC, (7.24b)
T — Timaz < 27, Ve; € OC, (7.24c)
— T — Tpaz < —2, Ve; € OC; (7.24d)
Ty Tmaz > 0, Ve; € OC. (7.24e)

Before solving the LP (7.24), many cells are overlapping free, hence the
number of variables in (7.24) would not be too many. Furthermore, from a
good initial solution, it only needs to perform LP solver in a few iterations.
After solving the LP (7.24), each cell would be aligned to the nearest placement
site. Meanwhile, a cell is marked as an illegal cell if this cell is overlapped with

other cells or out of the right boundary. For every illegal cell, we search all

215



TN e VATS'S

possible blank spaces. Then, a bipartite graph of illegal cells and blank spaces
is constructed, and the Kuhn-Munkres algorithm [68] is applied to find a best
matching for illegal cells and blank spaces, which runs in O(nj,), where ny; is
the number of illegal cells. After the above operations, all cells are placed in the

chip region legally.

7.5 Experimental Results

We implemented our analytical mixed-cell-height legalization algorithm in
the C++ programming language. To evaluate the effectiveness of our proposed
algorithm, we compared with the method in DAC’17 [21] and the algorithm
of the first-place team of the ICCAD-2017 CAD Contest [29], namely, DAC’17
and Topl, respectively. The tested benchmarks are modified from the ICCAD-
2017 CAD Contest on Multi-Deck Standard-Cell Legalization [29] by omitting
the fence-region constraints and the soft constraints. In our algorithm, the
parameter A in Problem (7.20) was set as 500, 5* and 6* in the splitting matrices
M and N were both set as 0.5. v, o, and k in Algorithm 7.2 were set as 1, 0.4
and 1, respectively. After the preprocessing step, if sub-cells sc; and sc; are in
the same row, then §;; = %; otherwise, ;; = 2. With the binaries provided
by the authors of [21] and the first place team of ICCAD-2017 CAD Contest,
all the experiments were run on the same PC with a 2.7GHz CPU and 16GB

memory.

Table 7.1 lists the statistics of the benchmarks and the legalization results.
In this table, for all benchmarks, “#C” gives the numbers of total standard cells,
“#S” the numbers of total single-row height standard cells, “#M” the numbers
of total macro cells, “D.(%)” the cell densities of circuits, “AHPWL(%)” the
HPWL increases from the corresponding global placement results, “Avg. Move.
(sites)” the average cell movements measured in the number of placement site

width, “Max. Move. (sites)” the maximum cell movements measured in the
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number of placement site width, and “CPU(s)” the runtimes of all compared

algorithms.

The experimental results are reported in Table 7.1. The table shows that
our algorithm achieves the best results among the three optimization method-
s. Compared with the work “DAC’17”, our algorithm achieves 37% shorter
AHPWL, 16% smaller average cell movement, and 64% smaller maximum cell
movement. The reason is that the method in [21] resolves overlaps only in the
horizontal direction, and if some overlaps among cells cannot be resolved in a
row, they are marked and moved into blank positions of a circuit in the illegal
cell handling step. In contrast, our method allows cells moving in both of the
horizontal and vertical directions, and if some overlaps among cells cannot be
resolved in a row, then these cells are automatically moved into other adjacent
rows. This horizontal- and vertical-direction legalization model can reduce not
only the average cell movement but also the maximum cell movement. Since
the number of variables in our model is larger than that in [21], our average
runtime is longer than that of DAC’17. Compared with the work “Topl”, our
legalization algorithm also achieves 9% shorter AHPWL, 5% smaller average
cell movement, and 8% smaller maximum cell movement. For some benchmarks
with macros, the maximum cell movements obtained by all the three compared
works are very large. These generated maximum cell movements are actually
caused by overlapping with macros, which cannot be further reduced. Since
“Topl” has shown its great advantages in the contest by winning other teams
with very large margins (perhaps the biggest margins in the placement contest
history), this comparison further validates the effectiveness of our analytical le-
galization method. Figures 7.7(a) and 7.7(b) show the respective final layout
and a partial layout of the benchmark “fft_2_md2” generated by our legalization

algorithm.

217



AP i el AT

YE
H

Table 7.1: Experimental results.

Cireuits Statistics AHPWL(%) Avg. Move. (sites) Max. Move. (sites) CPU(s)
#C #S  #M D.(%) DAC17 Topl Ours DAC’17 Topl Ours DAC’17 Topl Ours DAC’17 Topl Ours
des_1 112644 112644 0O 90.59 16.21 6.83 6.32 10.86 7.12  6.80 200.82 49.95 49.95 11.23  49.81 27.28
des_amdl 108288 103589 4 55.05 3.27 2.67 2.42 6.71 6.07 5.92 607.30 607.30 607.30 2.30 3.55  27.10
des.amd2 108288 105030 4 55.86 3.35 2,77  2.52 6.77 6.17 5.90 403.86 403.86 403.86 2.19 3.98 34.91
des.b.mdl 112679 106702 0 54.98 1.75 1.61 147 5.17 494 473  79.34 60.63  40.50 2.01 4.16 23.32
des.b.md2 112679 101908 0 64.69 2.05 1.78 1.72 5.74 543 5.25 198.74 4524  39.76 2.31 4.50  6.39
edit_-1.md1 130661 118005 O 67.47 1.47 1.40 1.40 6.22 594 576 109.34 83.75 74.34 3.49 4.22  8.92
edit.amd2 127414 115066 6 59.42 1.17 1.08 0.99 6.02 5.69 5.47 164.00 164.00 164.00 2.59 4.30 16.48
edit_.a.md3 127414 119616 6 56.92 2.69 1.70  1.39 9.11 7.63 6.77 233.00 233.00 233.00 5.91 10.03 29.71
fft 2. md2 32281 28930 0 83.12 11.21 9.02 8.52 8.84 7.80 7.44 10294 66.25 62.69 0.70 1.16  7.22
fit.amd2 30625 27431 6 32.41 0.98 0.97 0.96 5.03 4.94 485 345.50 345.50 345.50 0.69 1.14  2.62
fft_.a.md3 30625 28609 6 31.24 1.08 1.07  1.07 4.73 4.64 4.54 109.62 109.62 109.62 0.63 1.07 1.88
pciiamdl 29533 26680 4 49.57 3.61 3.19 3.16 6.01 5.70  5.53 72.48 63.76  63.76 0.61 0.91 9.64
pciiamd2 29533 25239 4 57.69 8.33 5.12  3.89 9.43 7.93 6.75 186.08 122.06 121.35 0.53 1.16 15.25
pci_b.mdl 28914 26134 6 26.47 2.55 2.36  2.06 6.35 6.08 5.88 32271 332.71 332.71 0.52 1.07  5.59
pci-b.md2 28914 28038 6 18.20 2.80 2.65 247 5.92 5.69 5.49 640.12 640.12 430.04 0.50 0.95 3.80
pci-b.md3 28914 27452 6 22.13 3.63 3.37  3.06 6.74 6.40 6.06 398.57 398.57 398.57 0.51 0.98 6.29
N.Avg. 1.37 1.09 1.00 1.16 1.06 1.00 1.64 1.08 1.00 0.18 0.37 1.00
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(a)

Figure 7.7: (a) Legalization result of the benchmark “fft_2_.md2” from our algorithm.
Cells are in blue, and movement in green. (b) A partial layout of (a).

7.6 Summary

In this chapter, we have considered both the average and the maximum
cell movements for the mixed-cell-height standard-cell legalization problem. By
analyzing and remodeling the objective function and constraints, we formulated
the mixed-cell-height standard-cell legalization problem as an MIQP, which con-
siders not only the average cell movement, but also the maximum movement,
the sub-maximum movement, the third maximum movement, etc. Then, the
MIQP was relaxed to a QP, which allows cells spreading in both of the hori-
zontal and vertical directions. By substituting and duplicating variables, the
QP was further converted to an equivalent LCP. Then the MMSIM was used to
solve the LCP. Experimental results have shown that our analytical legalization
method is effective in reducing wirelength and the average and maximum cell

movements.
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Chapter 8 Conclusions and Future Works

In this chapter, the results obtained in this thesis will be summarized, and

further works will also be suggested.

8.1 Conclusions

In this thesis, we have investigated the optimization theories and algorithms
for the challenges of emerging technologies and the advanced design technologies

in VLSI circuit industry.

e In Chapter 2, we proposed a discrete relaxation theory, and developed a
discrete relaxation based decomposition framework for the TPL layout de-
composition problem. By extending the existing line projection method,
we developed a surface projection method for identifying features which are
critical and should be colored prior, and this forms a basis of our discrete
relaxation method. To solve the TPL layout decomposition problem, our
discrete relaxation based decomposition method relaxes the problem in t-
wo steps. Firstly, the conflict graph was reduced to small size subgraphs
by two graph reduction techniques, which is a discrete relaxation of the
TPL problem. After that, the TPL problem on the small subgraphs was
relaxed to a nonlinear 0-1 programming problem by ignoring stitch inser-
tions and assigning weights to features. To legalize an optimal solution of
the relaxation problem to a feasible one of the TPL layout decomposition
problem, some techniques were carefully adopted, e.g., the one-stitch first
insertion, backtrack coloring. Experiments on the tested benchmarks have
shown that our decomposition method is efficient and effective, compared
with the state-of-the-art decomposers. Moreover, by our theoretical results,

we obtained optimal decompositions for some benchmarks. The developed
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discrete relaxation based decomposition method for TPL is successful. We

believe the idea can be applied to other problems.

Hybrid e-beam and triple patterning lithography is a new technology for
manufacture of VLSI circuit, which combines the advantages of e-beam and
TPL. Layout decomposition is a core problem in the hybrid lithography,
which is NP-hard on the general layout. In Chapter 3, we proposed a two
stage layout decomposition flow for the HETLD problem, which achieves de-
composition by two steps. First, we considered the e-beam and stitch aware
TPL mask assignment (ESTMA) problem, and then the problem was relaxed
by deleting some conflict edges, which was used for fast obtaining a solution
with some conflicts. Second, the infeasible solution with conflicts was legal-
ized to a feasible one of the HETLD problem by stitch insertion and e-beam
shot. To speed up decomposition, we reduced the problem size by removing
some vertices and some edges before decomposition. Furthermore, in order
to obtain a better solution with less VSB number, we proposed the extend-
ed minimum weight dominating set for R, mask assignment (MDSR,;MA)
problem. By solving the MDSR;MA problem in the first decomposition
stage, we could obtain a solution with the patterns in R, more likely being
assigned to TPL masks by stitch insertion. However, the ILP formulation
of the MDSR;MA problem has many more variables and constraints than
the ILP formulation of the ESTMA problem. In the decomposition process,
our objective is maximizing e-beam throughput (minimizing VSB number)
and minimizing stitch number. Experimental results have shown the effec-
tiveness of the ESTMA and the MDSR;MA based decomposition methods,

compared with the state-of-the-art decomposer.

In Chapter 4, we considered the contact layer mask and template assign-
ment problem of DSA with TPL for general layout, and proposed a discrete

relaxation method. First, we introduced negative edges in the conflict group-
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ing graph, and weight the edges of the conflict grouping graph. Then we
formulated a discrete relaxation problem of the contact layer assignment
problem of DSA with TPL. For obtaining better results, we introduced tri-
angle edges in the weighted conflict grouping graph, and thus introduced
some valid inequalities in the discrete relaxation problem. We transformed
the discrete relaxation solution to a legal solution of the initial problem by
addressing the template assignment problem on the layout graph. Our dis-
crete relaxation based method can estimate the gap between the obtained
solution and the optimal solution in the experiment, which is meaningful for
the NP-hard problem. Furthermore, our experimental results have shown
that the gaps between the obtained solutions and the optimal solutions are
very small. Specially, the discrete relaxation approach verifies the optimal-
ity of our experimental results of sparse benchmarks since the gaps are 0.
Finally, it must be remarked that we only consider the 1-D templates in this
chapter. However, the proposed method can be extended to handle more

general templates like 2 x 2, which needs further careful investigation.

In Chapter 5, we considered the redundant via insertion and guiding tem-
plate assignment for the DSA with multiple patterning (RGDM) problem,
including single patterning (RGDS), double patterning (RGDD) and triple
patterning (RGDT). First, for the RGDS problem, we constructed a new
ILP formulation basing on our conflict graph. The vertices in the conflic-
t graph are multiplets instead of guiding template assignments (GTAs),
which can greatly reduce the size of the conflict graph. To fast solve the
ILP, a local optimal MWIS solver was introduced to obtain a local optimal
result. Second, for the RGDD and RGDT problems, we proposed a two
stage method. At the first stage, a contraction graph was constructed, and
the max-M-cut problem is formulated and solved to obtain a mask assign-
ment. At the second stage, our MWIS solver for RGDS was used to obtain

a redundant via insertion and guiding template assignment for every mask.
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Experimental results have validated the efficiency and effectiveness of our

ILP formulation and algorithms.

In Chapter 6, we further considered dummy via insertion for the redundant
via insertion and DSA guiding template assignment problem. We construct-
ed a conflict graph on grid model. The vertices in the conflict graph are
multiplets instead of guiding template candidates. This substitution can
greatly reduce the size of the conflict graph. Based on the conflict graph,
we formulated the problem as an integer linear programming (ILP). To fast
solve the ILP, we relaxed it as an unconstrained nonlinear programming
(UNP), and then developed a line search optimization algorithm to obtain a
local optimal solution of the UNP. Since the algorithm is highly dependent
on the initial solution, we used a good enough initial solution instead of ran-
dom generation. Experimental results have demonstrated that the proposed
algorithm is effective and efficient. Experimental comparisons have indicat-
ed that consideration of dummy via insertion for the problem is better than

without the help of dummy via.

In Chapter 7, we considered both the average and the maximum cell move-
ments for the mixed-cell-height standard-cell legalization problem. By ana-
lyzing and remodeling the objective function and constraints, we formulated
the mixed-cell-height standard-cell legalization problem as an MIQP, which
considers not only the average cell movement, but also the maximum move-
ment, the sub-maximum movement, the third maximum movement, etc.
Then, the MIQP was relaxed to a QP, which allows cells spreading in both
of the horizontal and vertical directions. By substituting and duplicating
variables, the QP was further converted to an equivalent LCP. Then the
MMSIM was used to solve the LCP. Experimental results have shown that
our analytical legalization method is effective in reducing wirelength and

the average and maximum cell movements.
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8.2 Future Works

For the development of emerging lithography technologies, besides the chal-
lenges we investigated in this thesis, more other challenges still need to be further

studied and resolved. These include:

¢ MPL aware mixed-row-height standard cell design: In the near fu-
ture, multiple patterning (MPL) technology would be widely used to fabri-
cated advanced circuits. Existing works have considered MPL aware detailed
placement for the single-row-height standard cell. For modern mixed-row-

height standard cell circuit, the MPL friendly designs are still needed.

e EBL friendly placement: Besides low throughput, fogging effect and
proximity effect are two crucial challenges for EBL. A friendly consideration
is EBL aware placement, which achieves optimization by placing cell to avoid

the fogging and proximity effects.

e Manufacturing metal wire by 2D DSA: At present, most of the DSA
researches focus on fabricating vias/contacts. In the near future, 2D DSA
may be used to fabricate wires in metal layers. Hence, to obtain a better
patterning result with high resolution, the topic of 2D DSA aware routing

and placement will be further touched.

e DSA-EUV layout decomposition with Multi BCP: Recent years,
many works have concerned the DSA complementary MPL technology. How-
ever, due to the limitation of present correction technology, only a few of
regular DSA structures are discussed. Under the EUV lithography tech-
nology, more DSA structures and more BCP materials will be allowed to
fabricate features in layout. A crucial challenge is still layout decomposition

with more complex constraints.

e Layout-dependent effect aware physical design: Layout-dependent

effect (LDE) causes variation in device performance as well as mismatch in
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model-hardware correlation (MHC) in sub-10nm nodes. In order to effec-
tively explore the power-performance envelope for IC design, cell libraries
must provide cells with different diffusion heights, leading to neighbor diffu-
sion effect (NDE) due to inter-cell diffusion height change (diffusion steps).
A desirable design should enable handling NDE. Similarly, metal boundary
effect (MBE), gate line end effect (LEE), length of oxidation (LO), and well

proximity effect (WPE) should also be considered during physical design.

Incremental design: Most of the existing EDA design tools cannot sup-
port an incremental operation. A tiny schematic change may require to
perform the existing EDA design tool again. Undoubtedly, this start-all-
over-again manner is time- and cost-consuming. So, it would be better if an

EDA tool can support incremental design for a tiny schematic change.
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