

Clock Tree Synthesis Tutorial and iCTS Software

Weiguo Li Minnan Normal University dawnli619215645@gmail.com

May 10-13, 2024 | Xi'an, China

Overview

Where's CTS

Floorplan determining the area of the Die and Core, and placing the macro cell.

Placement placing standard cells into legal positions to achieve the optimal design object.

CTS designs a clock network, ensuring clock synchronization, achieving low-power and high-performance.

Routing materializes all nets to keep the wirelength as short as possible and adhere to the design rules.

What's CTS?

- CTS, the bridge between Placement and Routing
- Achieving skew balance and minimize design resource (buffers, wirelength)

EDA

What's our concern

- Timing of Clock Tree
 - skew

...

- latency
- worst negative slack (WNS)
- total negative slack (TNS)

- Design Resource
 - num of buffer insertions
 - wirelength
 - capacitance
 - power/area

...

What's the operation in CTS

- Routing Topology
 - starting from the driver pin
 - connect all load pins
 - Steiner tree properties

- Buffering
 - decompose the net
 - reduce fanout (4 \rightarrow 2)
 - enhanced driving capability

> delay/wirelength/capacitance/...

What's we expecting

May 10-13, 2024 | Xi'an, China

Overview

CTS Formula

EDA

We define the initial distribution of **flip-flops (sinks)** in the CTS stage as S. Given a clock source (root), we can establish **clock skew** constraint as follow:

$$\Delta delay\left(s_{i}
ight) = \max_{s_{i} \in \mathcal{S}} \left\{ delay\left(s_{i}
ight)
ight\} - \min_{s_{i} \in \mathcal{S}} \left\{ delay\left(s_{i}
ight)
ight\} \leq skew_bound,$$

where $delay(s_i)$ represents the delay from clock source to sink s_i (latency). We define the set of load pins for each clock net as a **cluster**, i.e., $u_i \in \mathcal{U}$, and generate a clock net, i.e., $n_i \in \mathcal{N}$.

CTS Formula

• CTS needs to satisfy additional design constraints, such as the **fanout** constraint:

 $|u_j| \leq max_fanout,$

the maximum **wirelength** constraint:

 $WL(n_j) \leq max_length,$

and the maximum clock net **capacitance** constraint:

CTS Formula

• CTS problem can be defined as a multi-objective optimization problem:

 $egin{aligned} \min & f(\mathcal{N}, \mathcal{U}, \mathcal{S}) \ s.t. & \Delta delay\left(s_{i}
ight) \leq skew_bound, \ & |u_{j}| \leq max_fanout, \ & WL\left(n_{j}
ight) \leq max_length, \ & \sum_{s_{i} \in u_{i}} Cap_{pin}(s_{i}) + c \cdot WL\left(n_{j}
ight) \leq max_cap, \end{aligned}$

 $f(\mathcal{N}, \mathcal{U}, \mathcal{S})$ represents the objective function, such as **design resources** and **power**.

It's a complex multi-objective optimization problem

Load Capacitance

EDA

Wire (Interconnect) Delay

• Elmore π -Model

EDA

Slew (Transition)

• Bakoglu Metric^[1] & PERI Model^[2]

$$Slew_{ideal}(s,t) = \ln 9 \cdot D_{wire}(s,t),$$

$$Slew_{wire}(t) = \sqrt{Slew_{wire}^2(s) + Slew_{ideal}^2(s,t)}$$
.

Look-up Table (LUT)

- *Delay/Slew_{out}* = *LUT*(*Slew_{in}*, *Cap_{load}*)
 - upstream input slew
 - downstream load capacitance
 - not reliant on complex computational models

- Model
 - bilinear interpolation
 - ML fitting...

timing() {

"Slew" : [...],

"Cap" : [...],

Buffer Delay

• Linear Fitting^[3]

EDA

This type of modeling is only effective for clock buffers

Buffer Slew

• Linear Fitting^[3]

$$Slew_{out}(*) = LUT_{slew}(Slew_{in}(*), Cap_{load}(*)),$$

$$Slew_{\scriptscriptstyle out}(*) = lpha \cdot Cap_{\scriptscriptstyle load}(*) + eta.$$

- Benefit
 - sufficient accuracy
 - independence from the upstream information (under certain conditions)

Clock Topology

Eda

Buffering

• Effect

- reduce fanout
- affect path delay
- enhance driving capability (transition)
- Property
 - size/area
 - power/timing
 - library (for LUT)
- Optimization
 - insertion
 - resizing

Overview

Skew Constraint Graph (SCG)

CTS Components

EDA

May 10-13, 2024 | Xi'an, China

iCTS Software

api

Overview

Bound Skew Tree (BST/DME)^[9]

Bottom-up Stage

- merge two sub-tree
- determine merge region
- Top-down Stage
 - location embedding
 - nearest endpoint
- Benefit
 - zero/bound skew
 - topology based

Bottom-up

Top-down

Fundamentals of Steiner Trees

- $PL(s_i)$, the **path length** from the source
- *MD*(*s*_{*i*}), the **Manhattan distance** from the source
- *WL*(*T*), the **total wirelength** of clock tree *T*
- $WL(T_{FLUTE})$, the wirelength of FLUTE^[10] tree

SALT^[11]

• Shallowness (path length)

$$lpha = \max_{s_i \in \mathcal{S}} \Big\{ rac{PL\left(s_i
ight)}{MD\left(s_i
ight)} \Big\},$$

• Lightness (tree weight)

$$\beta = \frac{WL(T)}{WL(MST(G))} \approx \frac{WL(T)}{WL(T_{FLUTE})}$$

Given ϵ , SALT realizes $\alpha \leq 1 + \epsilon$ and $\beta \leq 2 + \left[log \frac{2}{\epsilon} \right]$

Metric Mapping

Skewness*

EDA

• The skewness of the Steiner tree is defined as:

Skew-Latency-Load Tree (SLLT)*

• A rectilinear Steiner tree with $\alpha \leq \overline{\alpha}$, $\beta \leq \overline{\beta}$, and $\gamma \leq \overline{\gamma}$, is denoted as $(\overline{\alpha}, \overline{\beta}, \overline{\gamma}) - SLLT$.

Algorithm	Max PL	Min PL	Total WL	Mean PL	α	β	γ	Mean	Skew Control
H-tree	10	9	55.5	9.75	2	1.32	1.03	1.45	\checkmark
GH-tree	10	7	47.5	8.5	1.6	1.13	1.18	1.3	\checkmark
ZST	10.5	10.5	55.5	10.5	2.33	1.32	1.00	1.55	\checkmark
BST	10	8	50	9.25	2.25	1.19	1.08	1.51	\checkmark
FLUTE	9	5	42	7.44	1.4	1.00	1.21	1.2	×
R-SALT	9	5	43	7.06	1.00	1.02	1.27	1.10	×
CBS*	9	7	45	8.13	1.4	1.07	1.11	1.19	\checkmark

Concurrent BST and SALT (CBS)*

Bound Skew Tree (BST)

Lacks the ability to balance skew

•

Comparison

Table 1: Wirelength (um) comparison between R-SALT and CBS.

	Ģ	GreedyDis	st	Gr	reedyMer	ge	BiPartition				
Skew (ps)	80	10	5	80	10	5	80	10	5		
R-SALT	314.4	314.3	315.1	312.6	313.0	315.6	312.2	312.4	312.7		
CBS	306.0	307.1	316.1	305.2 306.3		314.3	305.3	305.6	312.7		
Reduce	2.67% 2.29% -0.32%		2.37%	2.14%	0.41%	2.21%	2.18%	0.00%			

Table 2: Comparison on wirelength, cap and delay between BST-DME and CBS.

	Wir	elength ((um)		Cap (fF)		Wire Delay (ps)				
Skew (ps)	80	10	5	80	10	5	80	10	5		
BST-DME	363.3	367.6	373.2	77.4	78.1	79.1	15.3	11.5	10.2		
CBS	305.6	306.1	314	67.5	67.6	68.9	11.2	9.2	7.4		
Reduce	15.90% 16.70%		15.90%	12.80%	13.50%	12.80%	26.60%	20.50%	26.80%		

EDA

Overview

• Special Net: Buffering between Buffers.

 $T(i,j) = D_{\scriptscriptstyle buf}(i) + D_{\scriptscriptstyle wire}(i,j) + D_{\scriptscriptstyle buf}(j),$

 $T'(i,j) = D'_{\mathit{buf}}(i) + D'_{\mathit{wire}}(i,k) + D'_{\mathit{buf}}(k) + D'_{\mathit{wire}}(k,j) + D'_{\mathit{buf}}(j).$

• Special Net: Buffering between Buffers.

EDA

$$T(i,j) - T'(i,j) = x \cdot (1-x) \cdot r \cdot c \cdot (\ln 9 \cdot \alpha + 1) \cdot L(i,j)^2 - \beta \cdot Cap_{pin} - \gamma,$$

• General Net: Buffering between Steiner Points.

 $T(i,j) = D_{wire}(i,j),$

 $T'(i,j) = D'_{wire}(i,k) + D'_{buf}(k) + D_{wire}(k,j).$

• General Net: Buffering between Steiner Points.

$$\Delta T(i,j) = \frac{1}{2} \cdot r \cdot c \cdot [(2 + \alpha \cdot \ln 9) \cdot x^2 - 2 \cdot x] \cdot L(i,j)^2$$

$$+ \{r \cdot x \cdot [(1 + \alpha \cdot \ln 9) \cdot Cap_{pin} - Cap_{load}^*(j)]$$

$$+ \beta \cdot c \cdot (1 - x) \} \cdot L(i,j)$$

$$+ \beta \cdot Cap_{load}^*(j) + \gamma$$

$$-\beta \cdot [c \cdot (1 - x) \cdot L(i,j) + Cap_{load}^*(j)] \leq 0,$$

$$Star i$$

$$Buf k$$

$$(1 - x) \cdot L(i,j)$$

$$Star j$$

• General Net: Buffering between Steiner Points.

$$\widehat{CL}_{stnr}(i,j) = 2 \sqrt{rac{eta \cdot rac{cap_{max}}{2} + \gamma}{r \cdot c \cdot (\ln 9 \cdot lpha + 1)}},$$

Table 3: Critical wirelength statistics.

Cell	<i>CL_{buf}</i>	\widehat{CL}_{stnr}	CL _{stnr}	x
BUFFD-X3	157.043	211.842	351.185	0.27
BUFFD-X4	146.492	206.286	275.137	0.31
BUFFD-X6	174.212	242.255	279.531	0.35
BUFFD-X8	187.388	257.016	270.459	0.38
BUFFD-X12	195.638	269.881	254.932	0.41
BUFFD-X16	211.98	287.216	258.906	0.42

Insertion Delay Estimation Model*

• Estimate the contribution of downstream load capacitance to delay:

IIIT(C

1 1

$$aelay_{est} = LOI(Cap_{load}, Slew_{in}) - \omega_s \cdot Slew_{in}$$

 $\mathbf{C}\mathbf{I}$

C1

 $\approx \omega_c \cdot Cap_{load} + \omega_{inherent}$

Overview

Hierarchical Framework*

Overview

Comparison of Open Source Test Cases

Table 4: Comparison between clock tree solutions from ours, commercial tool, and OpenROAD.

6	Latency (ps)			Skew (ps)			#Buffers			Buf Area (μm^2)			Clk Cap (<i>fF</i>)			Clk WL (µm)		
Case	Ours	Com.	OR.	Ours	Com.	OR.	Ours	Com.	OR.	Ours	Com.	OR.	Ours	Com.	OR.	Ours	Com.	OR.
s38584	71	76	93	13	8	17	43	43	45	26.6	26.8	39.7	904	1019	1087	3382.0	3366.5	3478.9
s38417	75	84	94	10	19	16	53	54	55	32.4	33.6	48.5	1083	1235	1284	3755.6	3867.4	3870.5
s35932	80	81	100	13	10	17	58	59	64	35.5	36.5	56.4	1217	1380	1433	4380.0	4420.9	4449.4
salsa20	82	87	112	19	21	29	81	83	109	49.6	51.8	96.1	1715	2050	2160	6446.9	6580.9	6863.5
ethernet	97	104	159	34	31	51	337	352	455	315.5	320.4	408.9	7314	8823	9210	26113.9	26105.5	27248.8
vga_lcd	134	146	206	41	49	92	575	597	775	416.9	451.8	812.1	12380	14920	15815	46763.1	45969.8	47484.1
Avg.	1.000	1.072	1.417	1.000	1.062	1.708	1.000	1.036	1.310	1.000	1.051	1.668	1.000	1.196	1.259	1.000	0.994	1.028

Comparison of ysyx designs

Table 5: Comparison of ysyx designs among clock tree solutions from ours, commercial tool, and OpenROAD.

Case	Latency (ps)			Skew (ps)			#Buffers			Buf Area (μm^2)			Clk Cap (fF)			Clk WL (µm)			
	Ours	Com.	OR.	Ours	Com.	OR.	Ours	Com.	OR.	Ours	Com.	OR.	Ours	Com.	OR.	Ours	Com.	OR.	
ysyx_0	113	120	156	31	15	63	639	654	799	550.4	561.5	1719.0	29032	31662	17130	42698.49	42935.09	45389.69	
ysyx_1	118	122	206	29	12	110	656	674	863	568.4	568.3	1896.4	29455	32204	17907	44538.49	45142.38	48113.24	
ysyx_2	140	143	191	38	16	68	943	958	1113	801.2	814.6	2401.7	35272	39256	25491	64884.11	64901.76	69753.65	
ysyx_3	144	139	193	36	16	59	798	808	914	671.8	689.0	1970.4	32483	35830	21484	57229.57	56918.98	59314.99	
Avg.	1.000	1.017	1.449	1.000	0.44	2.239	1.000	1.019	1.215	1.000	1.016	3.082	1.000	1.101	0.65	1.000	1.003	1.063	

Topology & Routing

s38417 Topology

s38417 Routing

vga_enh_top Topology

vga_enh_top Routing

Overview

Future

• Software

- Clock Topology
- Community
- iCTS API
- Flow
 - Timing Representation
 - Clock Routing
 - Buffering Optimization
- Technology
 - DSE
 - CCOpt
 - AI for CTS

Reference

[1] Bakoglu H B. Circuits, interconnections, and packaging for VLSI[J]. (No Title), 1990.

[2] Kashyap C V, Alpert C J, Liu F, et al. Closed-form expressions for extending step delay and slew metrics to ramp inputs for RC trees[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2004, 23(4): 509-516.

[3] Sitik C, Lerner S, Taskin B. Timing characterization of clock buffers for clock tree synthesis[C]. 2014 IEEE 32nd International Conference on Computer Design (ICCD), 2014: 230-236.

[4] Bakoglu H B. Circuits, interconnections, and packaging for VLSI[J]. 1990.

[5] Boese K D, Kahng A B. Zero-skew clock routing trees with minimum wirelength[C]. [1992] Proceedings. Fifth Annual IEEE International ASIC Conference and Exhibit, 1992: 17-21.

[6] Andreev A, Nikishin A, Gribok S, et al. Clock network fishbone architecture for a structured ASIC manufactured on a 28 NM CMOS process lithographic node: Google Patents, 2014.

[7] Chakrabarti P, Bhatt V, Hill D, et al. Clock mesh framework[C]. Thirteenth International Symposium on Quality Electronic Design (ISQED), 2012: 424-431.

[8] Abdelhadi A, Ginosar R, Kolodny A, et al. Timing-driven variation-aware synthesis of hybrid mesh/tree clock distribution networks[J]. Integration, 2013, 46(4): 382-391.

[9] Cong J, Kahng A B, Koh C-K, et al. Bounded-skew clock and Steiner routing[J]. ACM Transactions on Design Automation of Electronic Systems (TODAES), 1998, 3(3): 341-388.

[10] Chu C, Wong Y-C. FLUTE: Fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI design[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 27(1): 70-83.

[11] Chen G, Young E F. Salt: provably good routing topology by a novel steiner shallow-light tree algorithm[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 39(6): 1217-1230.

Thanks

